LASmoons: Manuel Jurado

Manuel Jurado (recipient of three LASmoons)
Departamento de Ingeniería Topográfica y Cartografía
Universidad Politécnica de Madrid, SPAIN

Background:
The availability of LiDAR data is creating a lot of innovative possibilities in different fields of science, education, and other field of interests. One of the areas that has been deeply impacted by LiDAR is cartography and in particular one highly specialized sub-field of cartography in the domain of recreational and professional orienteering running: the production of high-quality maps for orienteering races (Ditz et al., 2014). These are thematic maps with a lot of fine detail which demands many hours of field work for the map maker. In order to reduce the fieldwork, LiDAR data obtained from Airborne Research Australia (ARA) is going to be used in order to obtain DEM and to extract features that must be included in these maps. The data will be filtered and processed with the help of LAStools.

Final map with symbolism typical for use in orienteering running

Goal:
The goal of this project is to extract either point (boulders, mounds), linear (contours, erosion gullies, cliffs) and area features (vegetation density) that should be drawn in a orienteering map derived from high-resolution LiDAR. Different LiDAR derived raster images are being created: 0.5m DTM, vegetation density (J. Ryyppo, 2013), slope, Sky-View factor (Ž. Kokalj et al., 2011), and shaded relief. The area used is in Renmark, South Australia and the produced map is going to be used for the Australian Orienteering Championships 2018.

Sky-View factor of DTM for same area as shown above.

Data:
+
4 square kilometers of airborne LiDAR data produced by Airborne Research Australia at 18 pulses per square meter using the full waveform scanning LiDAR Q680i-S laser scanner from RIEGL
+ 60 hours of check and validation work in the field

LAStools processing:
1) tile into 500 by 500 meter tiles with 20 meter buffer [lastile]
2) classify isolated points as noise [lasnoise]
3) classify point clouds into ground and non-ground [lasground]
4) create a Digital Terrain Model (DTM) [las2dem]
5) normalize height of points above the ground [lasheight]
6) compute vegetation density metrics [lascanopy]
7) create hillshades of the raster DTMs [blast2dem or GDAL]

References:
Ditz, Robert, Franz Glaner, and Georg Gartner. (2014). “Laser Scanning and Orienteering Maps.” Scientific Journal of Orienteering 19.1.
JRyyppo, Jarkko. (2013). “Karttapullautin vegetation mapping guide”.
Kokalj, Žiga, Zaksek, Klemen, and Oštir, Krištof. (2011). Application of sky-view factor for the visualization of historic landscape features in lidar-derived relief models. Antiquity. 85. 263-273.

One thought on “LASmoons: Manuel Jurado

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s