LASmoons: Maeva Dang

Maeva Dang (recipient of three LASmoons)
Industrial Building and interdisciplinary Planning, Faculty of Civil Engineering
Vienna University of Technology, AUSTRIA

Background:
After centuries of urbanization and industrialization the green landscape of Rio de Janeiro in Brazil must be regenerated. The forests and other green areas, providers of ecosystem services, are fragmented and surrounded by dense urban occupation [1]. The loss of vegetation in the city reduces the amount of cooling and increases the urban heat islands effect. The metropolis also has a chronic problem with floods as a result of the lack of sustainable planning in urban areas of low permeability. A well-designed green infrastructure system is highly needed, since it would help the city to mitigate the negative effects of its urbanization and to be more resilient to environmental changes [2]. Intensive green roofs provide a large range of benefits from enhancing biodiversity in the city to reducing flood risks and mitigating the urban heat islands effect. The present research aims to quantitatively and accurately assess the intensive greening potential of the roof landscape of Rio de Janeiro based on LIDAR data.

A view of the roof landscape of the Urca district. Rio de Janeiro has high contrasts of forests and dense urban environments.

Goal:
The LAStools software will be used to check the quality of the data and create a Digital Terrain Model (DTM) and Digital Surface Model (DSM) for the city of Rio de Janeiro. The goal of the study is to identify the existing flat roof surfaces suitable for intensive greening (i.e. that have a slope between 0 and 5 degrees). The results will be provided for free to the public.

Data:
+
 Airborne LiDAR data provided by the City hall of Rio de Janeiro, Instituto Municipal de Urbanismo Pereira Passos (IPP)
+ Average pulse density 2 pulses per square meter
+ Sensor System: Leica ALS60

LAStools processing:
1) check the quality of the LiDAR data [lasinfo, lasoverlap, lasgrid]
2) classify into ground and non-ground points using tile-based processing [lastilelasground]
3) remove low and high outliers [lasheight, lasnoise]
4) identify buildings within the study area [lasclassify]
5) normalize LiDAR heights [lasheight]
6) generate DTM and DSM [las2dem, lasgrid]

References:
[1] Herzog C. (2012). Connecting the wonderful Landscapes of Rio de Janeiro. Available online . Accessed on 07/06/18.
[2] European Commission (2011). Communication from the Commission to the European Parliament, the Council, the
Economic and Social Committee and the Committee of the Regions: Our life insurance, our natural capital: an EU
biodiversity strategy to 2020. Available online. Accessed on 07/06/18.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s