Prototype for “native LAS 1.4 extension” of LASzip LiDAR Compressor Released

PRESS RELEASE (for immediate release)
February 13, 2017
rapidlasso GmbH, Gilching, Germany

Just in time for ILMF 2017 in Denver, the makers of the popular LiDAR processing software LAStools announce that the prototype for the “native LAS 1.4 extension” of their award-winning open source LASzip LiDAR compressor is ready for testing. An update to the compressed LAZ format had become necessary due to a core change in the ASPRS LAS 1.4 specification which had introduced several new point types.

A new feature of the updated LASzip compressor is the ability to selectively decompress of only those attributes of each point that really are needed by the application that is reading the LAZ file. Minimally this will be the x and y coordinate of each point and the return counts, which are sufficient to – for example – calculate the exact extend of the survey area. Most applications will also want to access z coordinate. However, the intensities, the GPS times, the RGB or NIR colors, and the new “Extra Bytes” are often not needed. As the updated LAZ format compresses these different attributes into separate layers, their decompression can then be skipped. Therefore sometimes only 40% of a compressed LAZ file needs to be decompressed to access the coordinates of points with many attributes.

percentage of bytes in a compressing LAZ file corresponding to different point attributes

The percentages of a compressed LAZ file used to encode different point attributes for two example LAS 1.4 files.

The new LASzip prototype is currently being crowd-tested. Interested parties who already have holdings of LAS 1.4 files with point types 6 to 10 may send an email to ‘lasproto@rapidlasso.com’ to participate in these tests.

The release of the new LASzip compressor comes more than a year late as development had been intentionally delayed to give ESRI an opportunity to contribute their needs and ideas to create a joint open format with the community and avoid LiDAR format fragmentation. Sadly, this effort ultimately failed.

About rapidlasso GmbH:
Technology powerhouse rapidlasso GmbH specializes in efficient LiDAR processing tools that are widely known for their high productivity. They combine robust algorithms with efficient I/O and clever memory management to achieve high throughput for data sets containing billions of points. The company’s flagship product – the LAStools software suite – has deep market penetration and is heavily used in industry, government agencies, research labs, and educational institutions. Visit http://rapidlasso.com for more information.

Create proper LAS 1.4 files with LAStools (for free)

So your LiDAR processing workflow produces beautiful LAS or LAZ output. You think the files are nothing short of perfect. But they are in LAS 1.2 format and the tender document explicitly requests delivery in the latest LAS 1.4 format. The free and open source las2las module of LAStools – also known as the Swiss Army knife of LiDAR processing – can easily up-convert them.

There are two possible scenarios: (1) The client wants the data as LAS 1.4 files but does not care about which point type is used. (2) The client wants LAS 1.4 and specifically asks for one of the new point types such as point type 6.

Let us assume you have LAS 1.2 content with point type 1 like these LAZ files from Martin county in Minnesota. Use these four tiles 5126-05-42.laz5126-05-43.laz5126-06-42.laz, and 5126-06-43.laz to repeat the LAS 1.4 up-conversion we are doing in the following. You will need to use version 160110 of LAStools (or newer) that you can download here.

A report generated with lasinfo shows geo-referencing information stored as GeoTIFF keys in the first VLR. Then there are 10 useless numbers stored in the second VLR that seem left-over from an earlier version of geo-referencing without EPSG codes. The two vendor-specific ‘NIIRS10’ VLRs should probably be removed unless they are meaningful to you. The LAS header is followed by 1564 user-defined bytes (sometimes used as “padding”) that we can also delete before delivery.

D:\LAStools\bin>lasinfo -i martin\5126-05-42.laz
reporting all LAS header entries:
 file signature: 'LASF'
 file source ID: 0
 global_encoding: 0
 project ID GUID data 1-4: E603549E-B74A-4696-3BAD-EA49F643C221
 version major.minor: 1.2
 system identifier: 'LAStools (c) by Martin Isenburg'
 generating software: 'lassort (110815) unlicensed'
 file creation day/year: 119/2011
 header size: 227
 offset to point data: 2163
 number var. length records: 4
 point data format: 1
 point data record length: 28
 number of point records: 13772409
 number of points by return: 13440460 240598 78743 12608 0
 scale factor x y z: 0.01 0.01 0.01
 offset x y z: 0 0 0
 min x y z: 361818.33 4855898.31 349.89
 max x y z: 364400.98 4859420.79 404.22
variable length header record 1 of 4:
 reserved 43707
 user ID 'LASF_Projection'
 record ID 34735
 length after header 40
 description 'by LAStools of Martin Isenburg'
 GeoKeyDirectoryTag version 1.1.0 number of keys 4
 key 1024 tiff_tag_location 0 count 1 value_offset 1 - GTModelTypeGeoKey: ModelTypeProjected
 key 3072 tiff_tag_location 0 count 1 value_offset 26915 - ProjectedCSTypeGeoKey: NAD83 / UTM 15N
 key 3076 tiff_tag_location 0 count 1 value_offset 9001 - ProjLinearUnitsGeoKey: Linear_Meter
 key 4099 tiff_tag_location 0 count 1 value_offset 9001 - VerticalUnitsGeoKey: Linear_Meter
variable length header record 2 of 4:
 reserved 43707
 user ID 'LASF_Projection'
 record ID 34736
 length after header 80
 description 'GeoTiff double parameters'
 GeoDoubleParamsTag (number of doubles 10)
 500000 0 -93 0.9996 0 1 6.37814e+006 298.257 0 0.0174533
variable length header record 3 of 4:
 reserved 43707
 user ID 'NIIRS10'
 record ID 1
 length after header 26
 description 'NIIRS10 Tile Index'
variable length header record 4 of 4:
 reserved 43707
 user ID 'NIIRS10'
 record ID 4
 length after header 10
 description 'NIIRS10 Timestamp'
the header is followed by 1564 user-defined bytes
LASzip compression (version 2.1r0 c2 50000): POINT10 2 GPSTIME11 2
reporting minimum and maximum for all LAS point record entries ...
 X 36181833 36440098
 Y 485589831 485942079
 Z 34989 40422
 intensity 1 4780
 return_number 1 4
 number_of_returns 1 4
 edge_of_flight_line 0 0
 scan_direction_flag 0 1
 classification 1 10
 scan_angle_rank -24 24
 user_data 0 32
 point_source_ID 5401 8015
 gps_time 243852.663596 403514.323142
number of first returns: 13440460
number of intermediate returns: 91408
number of last returns: 13440349
number of single returns: 13199808
overview over number of returns of given pulse: 13199808 323647 198449 50505 0 0 0
histogram of classification of points:
 6560507 unclassified (1)
 6744481 ground (2)
 401464 medium vegetation (4)
 55433 building (6)
 100 noise (7)
 10157 water (9)
 267 rail (10)

(1) Create LAS 1.4 files with point type 1

The las2las command shown below turns a folder of LAS 1.2 files into a folder of  LAS 1.4 files with option ‘-set_version 1.4’ without changing the point type. It removes the last three VLRs with option ‘-remove_vlrs_from_to 1 3’ and the user-defined bytes in the LAS header with option ‘-remove_padding’ (*). The result is as LAZ with option ‘-olaz’ and the task is run on up to 4 CPUs in parallel with option ‘-cores 4’.

(*) option ‘-remove_padding’ is called  ‘-remove_extra’ in older versions of LAStools.

las2las -i martin/*.laz ^
        -remove_vlrs_from_to 1 3 ^
        -remove_padding ^
        -set_version 1.4 ^
        -odir martin_LAS14_pt1 -olaz ^
        -cores 4

(2) Create LAS 1.4 files with point type 6

The las2las command shown below turns a folder of LAS 1.2 files into a folder of  LAS 1.4 files with option ‘-set_version 1.4’ and changes the point type from 1 to 6 with option ‘-set_point_type 6’. As before some VLRs and the header padding is removed. It also adds a second description of the georeferencing information by rewriting the existing information stored as GeoTIFF tags into a properly formatted OGC WKT string with option ‘-set_ogc_wkt’. Thanks to ESRI’s assault on the LAZ format the output still needs to be in LAS. It can be compressed with laszip in a subsequent step using the ‘LAS 1.4 compatibility mode‘ sponsored by NOAA.

las2las -i martin/*.laz ^
        -remove_vlrs_from_to 1 3 ^
        -remove_padding ^
        -set_version 1.4 ^
        -set_point_type 6 ^
        -set_ogc_wkt ^
        -odir martin_LAS14_pt6 -olas ^
        -cores 4

laszip -i martin_LAS14_pt6/*.las -cores 4

Below the output of lasinfo for the “upgraded” LAS 1.4 file with the OGC WKT string. Some of the key changes have been marked in red.

D:\LAStools\bin>lasinfo -i martin_LAS14_pt6\5126-05-42.las
reporting all LAS header entries:
 file signature: 'LASF'
 file source ID: 0
 global_encoding: 16
 project ID GUID data 1-4: E603549E-B74A-4696-3BAD-EA49F643C221
 version major.minor: 1.4
 system identifier: 'LAStools (c) by rapidlasso GmbH'
 generating software: 'las2las (version 160110)'
 file creation day/year: 119/2011
 header size: 375
 offset to point data: 1135
 number var. length records: 2
 point data format: 6
 point data record length: 30
 number of point records: 0
 number of points by return: 0 0 0 0 0
 scale factor x y z: 0.01 0.01 0.01
 offset x y z: 0 0 0
 min x y z: 361818.33 4855898.31 349.89
 max x y z: 364400.98 4859420.79 404.22
 start of waveform data packet record: 0
 start of first extended variable length record: 0
 number of extended_variable length records: 0
 extended number of point records: 13772409
 extended number of points by return: 13440460 240598 78743 12608 0 0 0 0 0 0 0 0 0 0 0
variable length header record 1 of 2:
 reserved 43707
 user ID 'LASF_Projection'
 record ID 34735
 length after header 40
 description 'by LAStools of Martin Isenburg'
 GeoKeyDirectoryTag version 1.1.0 number of keys 4
 key 1024 tiff_tag_location 0 count 1 value_offset 1 - GTModelTypeGeoKey: ModelTypeProjected
 key 3072 tiff_tag_location 0 count 1 value_offset 26915 - ProjectedCSTypeGeoKey: NAD83 / UTM 15N
 key 3076 tiff_tag_location 0 count 1 value_offset 9001 - ProjLinearUnitsGeoKey: Linear_Meter
 key 4099 tiff_tag_location 0 count 1 value_offset 9001 - VerticalUnitsGeoKey: Linear_Meter
variable length header record 2 of 2:
 reserved 43707
 user ID 'LASF_Projection'
 record ID 2112
 length after header 612
 description 'by LAStools of rapidlasso GmbH'
 WKT OGC COORDINATE SYSTEM:
 PROJCS["NAD83 / UTM 15N",GEOGCS["NAD83",DATUM["North_American_Datum_1983",SPHEROID["GRS 1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6269"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4269"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-93],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","26915"]]
reporting minimum and maximum for all LAS point record entries ...
 X 36181833 36440098
 Y 485589831 485942079
 Z 34989 40422
 intensity 1 4780
 return_number 1 4
 number_of_returns 1 4
 edge_of_flight_line 0 0
 scan_direction_flag 0 1
 classification 1 10
 scan_angle_rank -24 24
 user_data 0 32
 point_source_ID 5401 8015
 gps_time 243852.663596 403514.323142
 extended_return_number 1 4
 extended_number_of_returns 1 4
 extended_classification 1 10
 extended_scan_angle -4000 4000
 extended_scanner_channel 0 0
number of first returns: 13440460
number of intermediate returns: 91408
number of last returns: 13440349
number of single returns: 13199808
overview over extended number of returns of given pulse: 13199808 323647 198449 50505 0 0 0 0 0 0 0 0 0 0 0
histogram of classification of points:
 6560507 unclassified (1)
 6744481 ground (2)
 401464 medium vegetation (4)
 55433 building (6)
 100 noise (7)
 10157 water (9)
 267 rail (10)

The dArc Force Awakens: ESRI escalates LiDAR format war

The empire has not changed their evil ways, despite an encouraging email from ESRI’s founder and president Jack Dangermond in response to the Open Letter by the OSGeo that was delivered to ESRI, OGC, and the ASPRS. Facing an incredible backlash by the LiDAR community over the release of their “LAZ clone” there was a new hope that unnecessary format fragmention could be avoided by working together within the Point Cloud Domain Working Group of the OGC. In fact only one thing happened: ESRI went silent on the controversy. They temporarily stopped promoting their “LAZ clone” and focused on locking in more content.

dArc_force_awakens

The message of the rebellion has been consistent and clear like in these two videos from the TC meeting of the OGC in Nottingham and the ASPRS side bar in Reno: a roadmap forward to avoid format fragmentation by exploiting the “natural break” in the format due to LAS 1.4. But there was zero technical contribution from ESRI during the past three PC-DWG meetings of the OGC. The slide sets that bored the audiences in Boulder and in Nottingham were not meant to contribute but merely stalled for time. Recently in Sydney ESRI was awefully quiet, knowing they were doing the exact opposite of what the OGC stands for. And now the empire strikes back.

laztozlas

There is a dArc force awakening that threatens the peace within the LiDAR community. ESRI has just released a new tool (see above) that enslaves point clouds by converting them from the open LAZ format to the near-identical but closed “LAZ clone” that they call “zLAS” or “Optimized LAS”. This comes just a few months after an entire nation‘s LiDAR was enslaved in this proprietary format. We have repeatedly warned about the ramifications of locking up Petabytes of LiDAR data in a closed format that is controlled by a single vendor.

ESRI is one of the largest GIS training organizations. By instructing LiDAR novices to “optimize” their LiDAR files and pushing LiDAR providers to switch from open LAS or open LAZ to closed zLAS, they effectively destroy the current success of our open formats. ESRI’s command of the GIS market can – little by little – turn their own proprietry format into the dominant way in which LiDAR point clouds are stored. Then we loose our open exchange formats. Hence, ESRI’s proprietary format threatens all that we have achieved with LAS (and LAZ) over the past years: compatible LiDAR data exchange and incredible LiDAR software interoperability.

ESRI is now escalating the LiDAR format wars. Join the rebellion, Jedis: download your lazer sabers and liberate some LiDAR.

This is not an anti-ESRI campaign. For the past three years we have been trying to resolve this situation. We have repeatedly reached out to ESRI to prevent format fragmentation. We have repeatedly offered to create a joint compressed format. We have plead, begged, and bargained for the sake of our LiDAR community and the sake of their ArcGIS user community not to promote a near-identical yet incompatible way for storing massive amounts of point cloud data.

RIEGL Becomes LASzip Sponsor for LAS 1.4 Extension

PRESS RELEASE (for immediate release)
August 31, 2015
rapidlasso GmbH, Gilching, Germany

We are happy to announce that RIEGL Laser Measurement Systems, Austria has become a sponsor of the award-winning LASzip compressor. Their contribution at the Silver level will kick-off the actual development phase of the “native LAS 1.4 extension” that had been discussed with the LiDAR community over the past two years. This “native extension” for LAS 1.4 complements the existing “compatibility mode” for LAS 1.4 that was supported by Gold sponsor NOAA and Bronze sponsors Quantum Spatial and Trimble Geospatial. The original sponsor who initiated and financed the open sourcing of the LASzip compressor was USACE – the US Army Corps of Engineers (see http://laszip.org).

The existing “LAS 1.4 compatibility mode” in LASzip was created to provide immediate support for compressing the new LAS 1.4 point types by rewriting them as old point types and storing their new information as “Extra Bytes”. As an added side-benefit this has allowed legacy software without LAS 1.4 support to readily read these newer LAS files as most of the important fields of the new point types 6 to 10 can be mapped to fields of the older point types 1, 3, or 5.

In contrast, the new “native LAS 1.4 extension” of LASzip that is now sponsored in part by RIEGL will utilize the “natural break” in the format due to the new point types of LAS 1.4 to introduce entirely new features such as “selective decompression”, “rewritable classifications and flags”, “integrated spatial indexing”, … and other functionality that has been brain-stormed with the community since rapidlasso GmbH had issued the open “call for input” on native LASzip compression for LAS 1.4 in January 2014. We invite you to follow the progress or contribute to the development via the discussions in the “LAS room“.

silverLASzip_m60_512_275

About rapidlasso GmbH:
Technology powerhouse rapidlasso GmbH specializes in efficient LiDAR processing tools that are widely known for their high productivity. They combine robust algorithms with efficient I/O and clever memory management to achieve high throughput for data sets containing billions of points. The company’s flagship product – the LAStools software suite – has deep market penetration and is heavily used in industry, government agencies, research labs, and educational institutions. Visit http://rapidlasso.com for more information.

About RIEGL:
Austrian based RIEGL Laser Measurement Systems is a performance leader in research, development and production of terrestrial, industrial, mobile, bathymetric, airborne and UAS-based laser scanning systems. RIEGL’s innovative hard- and software provides powerful solutions for nearly all imaginable fields of application. Worldwide sales, training, support and services are delivered from RIEGL‘s Austrian headquarters and its offices in Vienna, Salzburg, and Styria, main offices in the USA, Japan, and in China, and by a worldwide network of representatives covering Europe, North and South America, Asia, Australia and Africa. Visit http://riegl.com for more information.

Two ASPRS awards for “pit-free” CHM algorithm

PRESS RELEASE (for immediate release)
July 29, 2015
rapidlasso GmbH, Gilching, Germany

The paper “Generating Pit-free Canopy Height Models from Airborne LiDAR” co-authored by rapidlasso GmbH and published in the September 2014 issue of PE&RS (the journal of the ASPRS) was awarded twice at the IGTF 2015 – ASPRS Annual Conference in Tampa, Florida last May. The paper took home the John I. Davidson President’s Award for Practical Papers (2nd Place) as well as the Talbert Abrams Award (2nd Honorable Mention).

The John I. Davidson President’s Award for Practical Papers (2nd Place).

The “pit-free” CHM paper wins the John I. Davidson President’s Award for Practical Papers (2nd Place) and the Talbert Abrams Award (Second Honorable Mention).

The “pit-free” CHM paper is joint work with Anahita Khosravipour, Andrew K. Skidmore, Tiejun Wang, and Yousif A. Hussin of ITC and University of Twente. It describes a technique that can create raster Canopy Height Models (CHMs) without the so called “pits” that tend to hamper subsequent extraction of individual tree attributes such as number, location, height, and crown diameter. The paper uses data measured in the field by ITC researchers to show that “pit-free” CHMs significantly lower the commission and omission errors in single tree detection.

Side-by-side comparison of a "standard" CHM and a "pit-free" CHM.

Visual side-by-side comparison of a “standard” versus a “pit-free” CHM.

The “pit-free” CHM algorithm can easily be implemented with LAStools either by modifying an available batch script or by executing the LAStools Pipelines distributed with the toolboxes for ArcGIS and QGIS. A detailed blog article that compares various different methods for creating CHMs is available via the Web pages of rapidlasso GmbH.

We at rapidlasso GmbH like to especially congratulate the main author, Ms. Anahita Khosravipour, who managed to get two awards with her very first academic publication. Those who like our “pit-free” CHM algorithm will probably also love the new technique that our team will introduce later this year at SilviLaser 2015 in France.

About rapidlasso GmbH:
Technology powerhouse rapidlasso GmbH specializes in efficient LiDAR processing tools that are widely known for their high productivity. They combine robust algorithms with efficient I/O and clever memory management to achieve high throughput for data sets containing billions of points. The company’s flagship product – the LAStools software suite – has deep market penetration and is heavily used in industry, government agencies, research labs, and educational institutions. Visit http://rapidlasso.com for more information.

Trimble joins LASzip sponsors USACE, NOAA, and Quantum Spatial

PRESS RELEASE (for immediate release)
July 13, 2015
rapidlasso GmbH, Gilching, Germany

We are happy to announce that Trimble’s Geospatial Division has become a sponsor of the LASzip compressor. Their contribution as a Bronze sponsor will improve the existing “LAS 1.4 compatibility mode” of LASzip whose creation and maintenance is already being supported by Gold sponsor NOAA and Bronze sponsor Quantum Spatial. The original Gold sponsor of the open source LASzip compressor was USACE – the US Army Corps of Engineers (see http://laszip.org).

The “LAS 1.4 compatibility mode” was created to provide immediate support for compressing the new LAS 1.4 point types by rewriting them as old point types and storing their new fields as “Extra Bytes”. As an added benefit this allows older software (without LAS 1.4 support) to access the newpoint types of LAS 1.4 files that would otherwise be unreadable. All important fields of the new point types 6 to 10 (i.e. those fields that matter to older software) are mapped to the corresponding fields of the older known point types 1, 3, or 5.
bronze_m60_512_275The Bronze sponsorship of Trimble’s Geospatial Division will pay for on-going improvements in the LASzip DLL and – in particular – add support for writing the new LAS 1.4 points in a streaming manner followed by an automated update of the bounding box and the point counters in the header.

About rapidlasso GmbH:
Technology powerhouse rapidlasso GmbH specializes in efficient LiDAR processing tools that are widely known for their high productivity. They combine robust algorithms with efficient I/O and clever memory management to achieve high throughput for data sets containing billions of points. The company’s flagship product – the LAStools software suite – has deep market penetration and is heavily used in industry, government agencies, research labs, and educational institutions. Visit http://rapidlasso.com for more information.

About Trimble’s Geospatial Division:
Trimble’s Geospatial Division provides solutions that facilitate high-quality, productive workflows and information exchange, driving value for a global and diverse customer base of surveyors, engineering and GIS service companies, governments, utilities and transportation authorities. Trimble’s innovative technologies include integrated sensors, field applications, real-time communications and office software for processing, modeling and data analytics. Using Trimble solutions, organizations can capture the most accurate spatial data and transform it into intelligence to deliver increased productivity and improved decision-making. Whether enabling more efficient use of natural resources or enhancing the performance and lifecycle of civil infrastructure, timely and reliable geospatial information is at the core of Trimble’s solutions to transform the way work is done. Visit http://trimble.com/Industries/Geospatial/ for more information.

About Trimble:
Trimble applies technology to make field and mobile workers in businesses and government significantly more productive. Solutions are focused on applications requiring position or location – including surveying, construction, agriculture, fleet and asset management, public safety and mapping. In addition to utilizing positioning technologies, such as GPS, lasers and optics, Trimble solutions may include software content specific to the needs of the user. Wireless technologies are utilized to deliver the solution to the user and to ensure a tight coupling of the field and the back office. Founded in 1978, Trimble is headquartered in Sunnyvale, California. Visit http://trimble.com for more information.

Five Myths about LAS, LAZ, and “Optimized LAS”

The Open Letter by OSGeo was delivered to ESRI, OGC, and the ASPRS last week and the initial reponses – including an email from ESRI’s founder and president Jack Dangermond – are very encouraging. Attendees of last weeks’ ASPRS conference were discussing how to respond to ESRI’s proprietary “Optimized LAS” that threatens the achievements of the open LiDAR formats LAS and LAZ that the community has been using for many years now. Below five clarifications to five wrong statements overheard at these meetings:

1) Martin’s “LAZ” format is also proprietary.

Wrong. LAZ – just like LAS – is an open format. LAZ is defined by a well commented open reference implementation in C/C++ and described in a PE&RS paper published in February 2013. LAS is defined via a specification document but has no reference implementation. Both can be freely used by anyone and (re-)implemented on any operating system and in any programming language. For example, there is now a javascript version of LAZ that someone else created.

2) We have no argument because ESRI provides a free API for “Optimized LAS”.

Wrong. “Optimized LAS” can only be used via the mechanism, the programming language, and the operating system of ESRI’s choosing. This is the very definition of “proprietary format”. Here is what Wikipedia says:

A proprietary format is a file format of a company, organization, or individual that contains data that is ordered and stored according to a particular encoding-scheme, designed by the company or organization to be secret, such that the decoding and interpretation of this stored data is only easily accomplished with particular software or hardware that the company itself has developed. The specification of the data encoding format is not released, or underlies non-disclosure agreements.

In contrast an open format is a file format that is published and free to be used by everybody.

3) Martin’s “LAZ” format is only used by LAStools.

Wrong. Large parts of the LiDAR industry embrace LAZ and have added read & write support for the LAZ format using the open source code or the DLL. Examples are QT Modeler, Globalmapper, FME, Fugroviewer, ERDAS IMAGINE, ENVI LiDAR, Bentley Pointools, TopoDOT, FUSION, CloudCompare, Gexel R3, Pointfuse, …and many more. Notable exceptions are ArcGIS and the product line offered by Lewis Graham’s GeoCue group. We maintain an (incomplete) list of software with native LAZ support here.

4) ESRI has engineered “Optimized LAS” for the cloud and “LAZ” cannot compete.

Wrong. The extra functionality in “Optimized LAS” is a simple mash-up of LAZ with spatial indexing LAX, an optional spatial sort, and a few extra statistics. This is why ESRI’s format is also known as the “LAZ clone”. We were able to feature-match these minor engineering changes in an afternoon which – a few days later – resulted in this April Fools’ Day prank. In fact, LAZ has been used “in the cloud” for well over 4 years on OpenTopography – the first and probably the premier Web accessible LiDAR cloud service of our industry. It is also used by many other LiDAR download servers. We maintain an (incomplete) list of portals offering compressed LAZ here.

5) ESRI’s “Optimized LAS” does not prevent people from using LAS.

ESRI is one of the largest GIS training organizations. If they teach hundreds of LiDAR novices to “optimize” their “unoptimized LAS” files while simultaneously lobbying large LiDAR providers into switching from LAS or LAZ to zLAS they will effectively destroy the current success of our open formats. ESRI’s command of the GIS market can – little by little – turn their own proprietry format into the dominant way in which LiDAR point clouds are exchanged. Then we loose our open exchange formats. Hence, ESRI’s proprietary “Optimized LAS” format “threatens” what we have achieved with LAS (and LAZ): open LiDAR data exchange and incredible LiDAR software interoperability.

This is not an anti-ESRI campaign. We hope to work with ESRI to resolve this situation. Below an image and a quote from ESRI’s ArcNews Spring 2011 news letter about the importance of open formats, standards, and specifications …

ESRI: "Esri continues to advocate the need for open access to geographic data and functionality through support for widely adopted and practical standards and specifications. Esri follows an open system strategy for accessing and using geographic data and functionality."

“Esri continues to advocate the need for open access to geographic data and functionality through support for widely adopted and practical standards and specifications. Esri follows an open system strategy for accessing and using geographic data and functionality.” — ArcNews, Spring 2011