LASmoons: David Bandrowski

David Bandrowski (recipient of three LASmoons)
Yurok Tribe
Native American Indian Tribe in Northern California, USA

Background:
Wild spring-run Chinook salmon populations on the South Fork Trinity River in Northern California are near the brink of extinction. The South Fork Trinity River is the most remote and the largest un-dammed river in the State of California, federally designated as a wild and scenic river, and is a keystone watershed within the Klamath River basin supporting one of the last remaining populations of wild spring-run Chinook salmon. Ecosystem restoration is urgently needed to improve watershed health in the face of climate change, land use, and water diversions. This drastic decline of the wild salmon species motivated the Yurok Tribe and its partners to take action and implement this project as a last opportunity to save this species before extinction. Spring-run Chinook are extremely important for the Yurok people culturally, spiritually, and for a subsistence food source.

sample of the available photogrammetry data

Goal:
Due to budgetary constraints, airborne LiDAR is not available; therefore the Yurok Tribe has been using aerial drones and Structure for Motion (SfM) photogrammetry to develop DTM models that can be used in determining available salmon habitat and to develop prioritized locations for restoration. The watershed has extremely heavy vegetation, and obtaining bare-earth surfaces for hydraulic modeling is difficult without the proper tools. The goal is to use LAStools to further restoration science and create efficient workflows for DTM development.

Data:
+
 length of river mapped: 8 Kilometers
+ number of points: 150,856,819
+ horizontal datum: North American Datum 83 – California State Plane – Zone 1 (usft)
+ vertical datum: North American Vertical Datum 88

LAStools processing:
1) data quality checking [lasinfo, lasview, lasgrid]
2) classify ground and non-ground points [lasground and lasground_new]
3) remove low and high outliers [lasheight, lasnoise]
4) create DTM tiles at appropriate resolution [las2dem]
5) create a normalized point cloud [lasheight]

LASmoons: Maria Kampouri

Maria Kampouri (recipient of three LASmoons)
Remote Sensing Laboratory, School of Rural & Surveying Engineering
National and Technical University of Athens, GREECE

Background:
The Aralar Natural Park, famous for its stunning landscapes, is located in the southeast of the province of Gipuzkoa, sharing a border with the neighboring province of Navarre. Inside the park there are nature reserves of exceptional importance, such as beech woods, large number of yew trees, very singular species of flora and fauna and areas of exceptional geological interest. Griffon vultures, Egyptian vultures, golden eagles and even bearded vultures (also known as lammergeier) can be seen flying over this area. European minks and Pyrenean desmans can be found in the streams and rivers that descend from the mountain tops.

The concept of biodiversity is based on inter- and intra-species genetic variation and has been evolving over the past 25 years. The importance of mapping biodiversity in order to plan its conservation, as well as identifying patterns in endemism and biodiversity hot-spots, have been pillars for EU and global environmental policy and legislation. The coupling of remote sensing and field data can increase reliability, periodicity and reproduce-ability of ecosystem process and biodiversity monitoring, leading to an increasing interest in environmental monitoring, using data for the same areas over time. Natural processes and complexity are best explored by observing ecosystems or landscapes through scale alteration, using spatial analysis tools, such as LAStools.

DTM generated with restricted version of las2dem above point limits

Goal:
The aim of this study is to investigate the potential use of LiDAR data for the identification and determination of forest patches of particular interest, with respect to ecosystem dynamics and biodiversity and to produce a relevant biodiversity map, based on Simpson’s Diversity Index for Aralar Natural Park.

Data:
+
 approximately 123 km^2 of LiDAR in 1km x 1km LAS tiles
+ Average point density: 2 pts/m^2
+ Spatial referencing system: ETRS89 UTM zone 30N with elevations on the EGM08 geoid. Data from LiDAR flights are These files were obtained from the LiDAR flight carried out in 2008 by the Provincial Council of Gipuzkoa and the LiDAR flights of the Basque Government.

LAStools processing:
1) data quality checking [lasinfolasoverlaplasgridlasreturn]
2) classify ground and non-ground points [lasground]
3) remove low and high outliers [lasheight, lasnoise]
4) identify buildings within the study area [lasclassify]
5) create DTM tiles with 0.5 step in ‘.bil’ format [las2dem]
6) create DSM tiles with 0.5 step in ‘.bil’ format [las2dem]
7) create a normalized point cloud [lasheight]
8) create a highest-return canopy height model (CHM) [lasthin, las2dem]
9) create a pit-free (CHM) with the spike-free algorithm [las2dem]
10) create various rasters with forest metrics [lascanopy]

The generated elevation and forest metrics rasters are then combined with satellite data to create a biodiversity map, using Simpson’s Diversity Index.

LASmoons: Sebastian Kasanmascheff

Sebastian Kasanmascheff (recipient of three LASmoons)
Forest Inventory and Remote Sensing
Georg-August-Universität Göttingen, GERMANY

Background:
Forest inventories are the backbone of forest management in Germany. In most federal forestry administrations in Germany, they are performed every ten years in order to assure that logging activities are sustainable. The process involves trained foresters who visit each stand (i.e. an area where the forest is similar in terms of age structure and tree species) and perform angle count sampling as developed by Walter Bitterlich in 1984. In a second step the annual growth is calculated using yield tables and finally a harvest volume is derived. There are three particular reasons to investigate how remote sensing can be integrated in the current inventory system:

  1. The current process does not involve random sampling of the sampling points and thus does not offer any measure of the accuracy of the data.
  2. Forest engineers hardly ever rely on the inventory data as a stand-alone basis for logging planning. Most often they rely on intuition alone and on the total volume count that they have to deliver for a wider area every year.
  3. In the last ten years, the collection of high-resolution LiDAR data has become more cost-effective and most federal agencies in Germany have access to it.

In order to be able to integrate the available remote-sensing data for forest inventories in Germany, it is important to tell apart different tree species as well as estimate their volumes.

Hesse is one of the most forested federal states in Germany.

Goal:
The goal of this project is to perform an object-based classification of conifer trees in Northern Hesse based on high-resolution LiDAR and multi-spectral orthophotos. The first step is to delineate the tree crowns. The second step is to perform a semi-automated classification using the spectral signature of the different conifer species.

Data:
+
 DSM (1m), DTM (1m), DSM (0.2 m) of the study area
+ Stereo images with 0.2 m resolution
+ high-resolution LiDAR data (average 10 points/m²)
+ forest inventory data
+ vector files of the individual forest stands
+ ground control points (field data)
All of this data is provided by the Hessian Forest Agency (HessenForst).

LAStools processing:
1) merge and clip the LAZ files [las2las]
2) classify ground and non-ground points [lasground]
3) remove low and high outliers [lasheight, lasnoise]
4) identify buildings within the study area [lasclassify]
5) create a normalized point cloud [lasheight]
6) create a highest-return canopy height model (CHM) [lasthin, las2dem]
7) create a pit-free (CHM) with the spike-free algorithm [las2dem]

LASmoons: Chris J. Chandler

Chris J. Chandler (recipient of three LASmoons)
School of Geography
University of Nottingham, UNITED KINGDOM

Background:
Wetlands provide a range of important ecosystem services: they store carbon, regulate greenhouse gas emissions, provide flood protection as well as water storage and purification. Preserving these services is critical to achieve sustainable environmental management. Currently, mangrove forests are protected in Mexico, however, fresh water wetland forests, which also have high capacity for storing carbon both in the trees and in the soil, are not protected under present legislation. As a result, coastal wetlands in Mexico are threatened by conversion to grazing areas, drainage for urban development and pollution. Given these threats, there is an urgent need to understand the current state and distribution of wetlands to inform policy and protect the ecosystem services provided by these wetlands.
In this project we will combine field data collection, satellite data (i.e. optical remote sensing, radar and LiDAR remote sensing) and modelling to provide an integrated technology for assessing the value of a range of ecosystem services, tested to proof of concept stage based on carbon storage. The outcome of the project will be a tool for mapping the value of a range of ecosystem services. These maps will be made directly available to local stakeholders including policy makers and land users to inform policy regarding forest protection/legislation and aid development of financial incentives for local communities to protect these services.

Wetland classification in the Chiapas region of Mexico

Goal:
At this stage of the project we have characterized wetlands for three priority areas in Mexico (Pantanos de Centla, La Encrucijada and La Mancha). Next stage is the up scaling of the field data at the three study sites using LiDAR data for producing high quality Canopy Height Model (CHM), which has been of great importance for biomass estimation (Ferraz et al., 2016). A high quality CHM will be achieved using LAStools software.

Data:
+
LiDAR provided by the Mexican National Institute of Statistics and Geography (INEGI)
+ average height: 5500 m, mirror angle: +/- 30 degrees, speed: 190 knots
+ collected with Cessna 441, Conquest II system at 1 pts/m².

LAStools processing:
1)
create 1000 meter tiles with 35 meter buffer to avoid edge artifacts [lastile]
2) classify point clouds into ground and non-ground [lasground]
3) normalize height of points above the ground [lasheight]
4) create a Digital Terrain and Surface Model (DTM and DSM) [las2dem]
5) generate a spike-free Canopy Height Model (CHM) as described here and here [las2dem]
6) compute various metrics for each plot and the normalized tiles [lascanopy]

References:
Ferraz, A., Saatchi, S., Mallet, C., Jacquemoud S., Gonçalves G., Silva C.A., Soares P., Tomé, M. and Pereira, L. (2016). Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory. Remote Sensing, 8(8), 653.

LASmoons: Huaibo Mu

Huaibo Mu (recipient of three LASmoons)
Environmental Mapping, Department of Geography
University College London (UCL), UK

Background:
This study is a part of the EU-funded Metrology for Earth Observation and Climate project (MetEOC-2). It aims to combine terrestrial and airborne LiDAR data to estimate biomass and allometry for woodland trees in the UK. Airborne LiDAR can capture large amounts of data over large areas, while terrestrial LiDAR can provide much more details of high quality in specific areas. The biomass and allometry for individual specific tree species in 1 ha of Wytham Woods located about 5km north west of the University of Oxford, UK are estimated by combining both airborne and terrestrial LiDAR. Then the bias will be evaluated when estimation are applied on different levels: terrestrial LiDAR level, tree level, and area level. The goal are better insights and a controllable error range in the bias of biomass and allometry estimates for woodland trees based on airborne LiDAR.

Goal:
The study aims to find the suitable parameters of allometric equations for different specific species and establish the relationship between the tree height and stem diameter and crown diameter to be able to estimate the above ground biomass using airborne LiDAR. The biomass estimates under different levels are then compared to evaluate the bias and for the total 6ha of Wytham Woods for calibration and validation. Finally the results are to be applied to other woodlands in the UK. The LiDAR processing tasks for which LAStools are used mainly center around the creation of suitable a Canopy Height Model (CHM) from the airborne LiDAR.

Data:
+ Airborne LiDAR data produced by Professor David Coomes (University of Cambridge) with Airborne Research and Survey Facility (ARSF) Project code of RG13_08 in June 2014. The average point density is about 5.886 per m^2.
+ Terrestrial LiDAR data collected by UCL’s team leader by Dr. Mat Disney and Dr. Kim Calders in order to develop very detailed 3D models of the trees.
+ Fieldwork from the project “Initial Results from Establishment of a Long-term Broadleaf Monitoring Plot at Wytham Woods, Oxford, UK” by Butt et al. (2009).

LAStools processing:
1) check LiDAR quality as described in these videos and articles [lasinfo, lasvalidate, lasoverlap, lasgrid, las2dem]
2) classify into ground and non-ground points using tile-based processing  [lastile, lasground]
3) generate a Digital Terrain Model (DTM) [las2dem]
4) compute height of points and delete points higher than maximum tree height obtained from terrestrial LiDAR [lasheight]
5) convert points into disks with 10 cm diameter to conservatively account for laser beam width [lasthin]
6) generate spike-free Digital Surface Model (DSM) based on algorithm by Khosravipour et al. (2016) [las2dem]
7) create Canopy Height Model (CHM) by subtracting DTM from spike-free DSM [lasheight].

References:
Butt, N., Campbell, G., Malhi, Y., Morecroft, M., Fenn, K., & Thomas, M. (2009). Initial results from establishment of a long-term broadleaf monitoring plot at Wytham Woods, Oxford, UK. University Oxford, Oxford, UK, Rep.
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T.J., Hussin, Y.A., (2014). Generating pit-free Canopy Height Models from Airborne LiDAR. PE&RS = Photogrammetric Engineering and Remote Sensing 80, 863-872.
Khosravipour, A., Skidmore, A.K., Isenburg, M. and Wang, T.J. (2015) Development of an algorithm to generate pit-free Digital Surface Models from LiDAR, Proceedings of SilviLaser 2015, pp. 247-249, September 2015.
Khosravipour, A., Skidmore, A.K., Isenburg, M (2016) Generating spike-free Digital Surface Models using raw LiDAR point clouds: a new approach for forestry applications, (journal manuscript under review).

LASmoons: Marzena Wicht

Marzena Wicht (recipient of three LASmoons)
Department of Photogrammetry, Remote Sensing and GIS
Warsaw University of Technology, Poland.

Background:
More than half of human population (Heilig 2012) suffers from many negative effects of living in cities: increased air pollution, limited access to the green areas, Urban Heat Island (UHI) and many more. To mitigate some of these effects, many ideas came up over the years: reducing the surface albedo, the idea of the Garden City, green belts, and so on. Increasing horizontal wind speed might actually improve both, the air pollution dispersion and the thermal comfort in urban areas (Gál & Unger 2009). Areas of low roughness promote air flow – discharging the city from warm, polluted air and supplying it with cool and fresh air – if they share specific parameters, are connected and penetrate the inner city with a country breeze. That is why mapping low roughness urban areas is important in better understanding urban climate.

Goal:
The goal of this study is to derive buildings (outlines and height) and high vegetation using LAStools and to use that data in mapping urban ventilation corridors for our case study area in Warsaw. There are many ways to map these; however using ALS data has certain advantages (Suder& Szymanowski 2014) in this case: DSMs can be easily derived, tree canopy (incl. height) can be joined to the analysis and buildings can be easily extracted. The outputs are then used as a basis for morphological analysis, like calculating frontal area index. LAStools has the considerable advantage of processing large quantities of data (~500 GB) efficiently.

Frontal area index calculation based on 3D building database

Data:
+ LiDAR provided by Central Documentation Center of Geodesy and Cartography
+ average pulse density 12 p/m^2
+ covers 517 km^2 (whole Warsaw)

LAStools processing:
1) quality checking of the data as described in several videos and blog posts [lasinfo, lasvalidate, lasoverlap, lasgrid, lasduplicate, lasreturnlas2dem]
2) reorganize data into sufficiently small tiles with buffers to avoid edge artifacts [lastile]
3) classify point clouds into vegetation and buildings [lasground, lasclassify]
4) normalize LiDAR heights [lasheight]
5) create triangulated, rasterized derivatives: DSM / DTM / nDSM / CHM [las2dem, blast2dem]
6) compute height-based metrics (e.g. ‘-avg’, ‘-std’, and ‘-p 50’) [lascanopy]
7) generate subsets during the workflow [lasclip]
8) generate building footprints [lasboundary]

References:
Heilig, G. K. (2012). World urbanization prospects: the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York.
Gal, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206.
Suder, A., & Szymanowski, M. (2014). Determination of ventilation channels in urban area: A case study of Wroclaw (Poland). Pure and Applied Geophysics, 171(6), 965-975.

LASmoons: Muriel Lavy

Muriel Lavy (recipient of three LASmoons)
RED (Risk Evaluation Dashboard) project
ISE-Net s.r.l, Aosta, ITALY.

Background:
The Aosta Valley Region is a mountainous area in the heart of the Alps. This region is regularly affected by hazard natural phenomena connected with the terrain geomorphometry and the climate change: snow avalanche, rockfalls and landslide.
In July 2016 a research program, funded by the European Program for the Regional Development, aims to create a cloud dashboard for the monitoring, the control and the analysis of several parameters and data derived from advanced sensors: multiparametrical probes, aerial and oblique photogrammetry and laser scanning. This tool will help the territory management agencies to improve the risk mitigation and management system.

The RIEGL VZ-4000 scanning the Aosta Valley Region in Italy.

Goal:
This study aims to classify the point clouds derived from aerial imagery integrated with laser scanning data in order to generate accurate DTM, DSM and Digital Snow Models. The photogrammetry data set was acquired with a Nikon D810 camera from an helicopter survey. The aim of further analysis is to detect changes of natural dynamic phenomena that have occurred via volume analysis and mass balance evaluation.

Data:
+ The photogrammetry data set was acquired with an RGB camera (Nikon D810) with a focal length equivalent of 50 mm from a helicopter survey: 1060 JPG images
+ The laser scanner data set was acquired using a Terrestrial Laser Scanner (RIEGL VZ-4000) combined with a Leica GNSS device (GS25) to georeference the project. The TLS dataset was then used as base reference to properly align and georeference the photogrammetry point cloud.

LAStools processing:
1) check the reference system and the point cloud density [lasinfo, lasvalidate]
2) remove isolated noise points [lasnoise]
3) classify point into ground and non-ground [lasground]
4) classify point clouds into vegetation and other [lasclassify]
5) create DTM and DSM  [las2dem, lasgrid, blast2dem]
6) produce 3D visualizations to facilitate the communication and the interaction [lasview]