Removing Excessive Low Noise from Dense-Matching Point Clouds

Point clouds produced with dense-matching by photogrammetry software such as SURE, Pix4D, or Photoscan can include a fair amount of the kind of “low noise” as seen below. Low noise causes trouble when attempting to construct a Digital Terrain Model (DTM) from the points as common algorithm for classifying points into ground and non-ground points – such as lasground – tend to “latch onto” those low points, thereby producing a poor representation of the terrain. This blog post describes one possible LAStools workflow for eliminating excessive low noise. It was developed after a question in the LAStools user forum by LASmoons holder Muriel Lavy who was able to share her noisy data with us. See this, this, this, thisthis, and this blog post for further reading on this topic.

Here you can download the dense matching point cloud that we are using in the following work flow:

We leave the usual inspection of the content with lasinfolasview, and lasvalidate that we always recommend on newly obtained data as an exercise to the reader. Note that a check for proper alignment of flightlines with lasoverlap that we consider mandatory for LiDAR data is not applicable for dense-matching points.

With lastile we turn the original file with 87,261,083 points into many smaller 500 by 500 meter tiles for efficient multi-core processing. Each tile is given a 25 meter buffer to avoid edge artifacts. The buffer points are marked as withheld for easier on-the-fly removal. We add a (terser) description of the WGS84 UTM zone 32N to each tile via the corresponding EPSG code 32632:
lastile -i muriel\20161127_Pancalieri_UTM.laz ^
        -tile_size 500 -buffer 25 -flag_as_withheld ^
        -epsg 32632 ^
        -odir muriel\tiles_raw -o panca.laz
Because dense-matching points often have a poor point order in the files they get delivered in we use lassort to rearrange them into a space-filling curve order as this will speed up most following processing steps:
lassort -i muriel\tiles_raw\panca*.laz ^
        -odir muriel\tiles_sorted -olaz ^
        -cores 7
We then run lasthin to reclassify the highest point of every 2.5 by 2.5 meter grid cell with classification code 8. As the spacing of the dense-matched points is around 40 cm in both x and y, around 40 points will fall into each such grid cell from which the highest is then classified as 8:
lasthin -i muriel\tiles_sorted\panca*.laz ^
        -step 2.5 ^
        -highest -classify_as 8 ^
        -odir muriel\tiles_thinned -olaz ^
        -cores 7
Considering only those points classified as 8 in the last step we then run lasnoise to find points that are highly isolated in wide and flat neighborhoods that are then reclassified as 7. See the README file of lasnoise for a detailed explanation of the different parameters:
lasnoise -i muriel\tiles_thinned\panca*.laz ^
         -ignore_class 0 ^
         -step_xy 5 -step_z 0.1 -isolated 4 ^
         -classify_as 7 ^
         -odir muriel\tiles_isolated -olaz ^
         -cores 7
Now we run a temporary ground classification of only (!!!) on those points that are still classified as 8 using the default parameters of lasground. Hence we only use the points that were the highest points on the 2.5 by 2.5 meter grid and that were not classified as noise in the previous step. See the README file of lasground for a detailed explanation of the different parameters:
lasground -i muriel\tiles_isolated\panca*.laz ^
          -city -ultra_fine -ignore_class 0 7 ^
          -odir muriel\tiles_temp_ground -olaz ^
          -cores 7
The result of this temporary ground filtering is then merely used to mark all points that are 0.5 meter below the triangulated TIN of these temporary ground points with classification code 12 using lasheight. See the README file of lasheight for a detailed explanation of the different parameters:
lasheight -i muriel\tiles_temp_ground\panca*.laz ^
          -do_not_store_in_user_data ^
          -classify_below -0.5 12 ^
          -odir muriel\tiles_temp_denoised -olaz ^
          -cores 7
In the resulting tiles the low noise (but also many points above the ground) are now marked and in a final step we produce properly classified denoised tiles by re-mapping the temporary classification codes to conventions that are more consistent with the ASPRS LAS specification using las2las:
las2las -i muriel\tiles_temp_denoised\panca*.laz ^
        -change_classification_from_to 1 0 ^
        -change_classification_from_to 2 0 ^
        -change_classification_from_to 7 0 ^
        -change_classification_from_to 12 7 ^
        -odir muriel\tiles_denoised -olaz ^
        -cores 7
Let us visually check what each of the above steps has produced by zooming in on a 300 meter by 100 meter strip of points with the bounding box (388500,4963125) to (388800,4963225) in tile ‘panca_388500_4963000.laz’:
The final classification of all points that are not already classified as noise (7) into ground (2) or non-ground (1) was done with a final run of lasground. See the README file of lasground for a detailed explanation of the different parameters:
lasground -i muriel\tiles_denoised\panca*.laz ^
          -ignore_class 7 ^
          -city -ultra_fine ^
          -odir muriel\tiles_ground -olaz ^
          -cores 7
Then we create a seamless hill-shaded DTM tiles by triangulating all the points classified as ground into a temporary TIN (including those in the 25 meter buffer) and then rasterizing only the inner 500 meter by 500 meter of each tile with option ‘-use_tile_bb’ of las2dem. For more details on the importance of buffers in tile-based processing see this blog post here.
las2dem -i muriel\tiles_ground\panca*.laz ^
        -keep_class 2 ^
        -step 1 -hillshade ^
        -use_tile_bb ^
        -odir muriel\tiles_dtm -opng ^
        -cores 7

And here the original DSM side-by-side with resulting DTM after low noise removal. One dense forested area near the center of the data was not entirely removed due to the lack of ground points in this area. Integrating external ground points or manual editing with lasview are two possible way to rectify these few remaining errors …

Integrating External Ground Points in Forests to Improve DTM from Dense-Matching Photogrammetry

The biggest problem of generating a Digital Terrain Model (DTM) from the photogrammetric point clouds that are produced from aerial imagery with dense-matching software such as SURE, Pix4D, or Photoscan is dense vegetation: when plants completely cover the terrain not a single point is generated on the ground. This is different for LiDAR point clouds as the laser can even penetrate dense multi-level tropical forests. The complete lack of ground points in larger vegetated areas such as closed forests or dense plantations means that the many processing workflows for vegetation analysis that have been developed for LiDAR cannot be used for photogrammetric point clouds  … unless … well unless we are getting those missing ground points some other way. In the following we see how to integrate external ground points to generate a reasonable DTM under a dense forest with LAStools. See this, this, this, this, and this article for further reading.

Here you can download the dense matching point cloud, the manually collected ground points, and the forest stand delineating polygon that we are using in the following example work flow:

We leave the usual inspection of the content with lasinfo and lasview that we always recommend on newly obtained data as an exercise to the reader. Using las2dem and lasgrid we created the Google Earth overlays shown above to visualize the extent of the dense matched point cloud and the distribution of the manually collected ground points:

las2dem -i DenseMatching.laz ^
        -thin_with_grid 1.0 ^
        -extra_pass ^
        -step 2.0 ^
        -hillshade ^
        -odix _hill_2m -opng

lasgrid -i ManualGround.laz ^
        -set_RGB 255 0 0 ^
        -step 10 -rgb ^
        -odix _grid_10m -opng

Attempts to ground-classify the dense matching point cloud directly are futile as there are no ground points under the canopy in the heavily forested area. Therefore 558 ground points were manually surveyed in the forest of interest that are around 50 to 120 meters apart from another. We show how to integrate these points into the dense matching point cloud such that we can successfully extract bare-earth information from the data.

In the first step we “densify” the manually collected ground points by interpolating them with triangles onto a raster of 2 meter resolution that we store as LAZ points with las2dem. You could consider other interpolation schemes to “densify” the ground points, here we use simple linear interpolation to prove the concept. Due to the varying distance between the manually surveyed ground points we allow interpolating triangles with edge lengths of up to 125 meters. These triangles then also cover narrow open areas next to the forest, so we clip the interpolated ground points against the forest stand delineating polygon with lasclip to classify those points that are really in the forest as “key points” (class 8) and all others as “noise” (class 7).

las2dem -i ManualGround.laz ^
        -step 2 ^
        -kill 125 ^
        -odix _2m -olaz

lasclip -i ManualGround_2m.laz ^
        -set_classification 7 ^ 
        -poly forest.shp ^
        -classify_as 8 -interior ^
        -odix _forest -olaz

Below we show the resulting densified ground points colored by elevation that survive the clipping against the forest stand delineating polygon and were classified as “key points” (class 8). The interpolated ground points in narrow open areas next to the forest that fall outside this polygon were classified as “noise” (class 7) and are shown in violet. They will be dropped in the next step.

We then merge the dense matching points with the densified manual ground points (while dropping all the violet points marked as noise) as input to lasthin and reclassify the lowest point per 1 meter by 1 meter with a temporary code (here we use class 9 that usually refers to “water”). Only the subset of lowest points that receives the temporary classification code 9 will be used for ground classification later.

lasthin -i DenseMatching.laz ^
        -i ManualGround_2m_forest.laz ^
        -drop_class 7 ^
        -merged ^
        -lowest -step 1 -classify_as 9 ^
        -o DenseMatchingAndDensifiedGround.laz

We use the GUI of lasview to pick several interesting areas for visual inspection. The selected points load much faster when the LAZ file is spatially indexed and therefore we first run lasindex. For better orientation we also load the forest stand delineating polygon as an overlay into the GUI.

lasindex -i DenseMatchingAndDensifiedGround.laz 

lasview -i DenseMatchingAndDensifiedGround.laz -gui

We pick the area shown below that contains the target forest with manually collected and densified ground points and a forested area with only dense matching points. The difference could not be more drastic as the visualizations show.

Now we run ground classification using lasground with option ‘-town’ using only the points with the temporary code 9 by ignoring all other classifications 0 and 8 in the file. We leave the temporary classification code 9 unchanged for all the points that were not classified with “ground” code 2 so we can visualize later which ones those are.

lasground -i DenseMatchingAndDensifiedGround.laz ^
          -ignore_class 0 8 ^
          -town ^
          -non_ground_unchanged ^
          -o GroundClassified.laz

We again use the GUI of lasview to pick several interesting areas after running lasindex and again load the forest stand delineating polygon as an overlay into the GUI.

lasindex -i GroundClassified.laz 

lasview -i GroundClassified.laz -gui

We pick the area shown below that contains all three scenarios: the target forest with manually collected and densified ground points, an open area with only dense matching points, and a forested area with only dense matching points. The result is as expected: in the target forest the manually collected ground points are used as ground and in the open area the dense-matching points are used as ground. But there is no useful ground in the other forested area.

Now we can compute the heights of the points above ground for our target forest with lasheight and either replace the z elevations in the file of store them separately as “extra bytes”. Then we can compute, for example, a Canopy Height Model (CHM) that color codes the height of the vegetation above the ground with lasgrid. Of course this will only be correct in the target forest where we have “good” ground but not in the other forested areas. We also compute a hillshaded DTM to be able to visually inspect the topography of the generated terrain model.

lasheight -i GroundClassified.laz ^
          -store_as_extra_bytes ^
          -o GroundClassifiedWithHeights.laz

lasgrid -i GroundClassifiedWithHeights.laz ^
        -step 2 ^
        -highest -attribute 0 ^
        -false -set_min_max 0 25 ^
        -o chm.png

las2dem -i GroundClassified.laz ^
        -keep_class 2 -extra_pass ^
        -step 2 ^ 
        -hillshade ^
        -o dtm.png

Here you can download the resulting color-coded CHM and the resulting hill-shaded DTM as Google Earth KMZ overlays. Clearly the resulting CHM is only meaningful in the target forest where we used the manually collected ground points to create a reasonable DTM. In the other forested areas the ground is only correct near the forest edges and gets worse with increasing distance from open areas. The resulting DTM exhibits some interesting looking  bumps in the middle of areas with manually collected ground point. Those are a result of using the dense-matching points as ground whenever their elevation is lower than that of the manually collected points (which is decided in the lasthin step). Whether those bumps represent true elevations of are artifacts of low erroneous elevation from dense-matching remains to be investigated.

For forests on complex and steep terrain the number of ground points that needs to be manually collected may make such an approach infeasible in practice. However, maybe you have another source of elevation, such as a low-resolution DTM of 10 or 25 meter provided by your local government. Or maybe even a high resolution DTM of 1 or 2 meter from a LiDAR survey you did several years ago. While the forest may have grown a lot in the past years, the ground under the forest will probably not have changed much …

LASmoons: Marzena Wicht

Marzena Wicht (recipient of three LASmoons)
Department of Photogrammetry, Remote Sensing and GIS
Warsaw University of Technology, Poland.

Background:
More than half of human population (Heilig 2012) suffers from many negative effects of living in cities: increased air pollution, limited access to the green areas, Urban Heat Island (UHI) and many more. To mitigate some of these effects, many ideas came up over the years: reducing the surface albedo, the idea of the Garden City, green belts, and so on. Increasing horizontal wind speed might actually improve both, the air pollution dispersion and the thermal comfort in urban areas (Gál & Unger 2009). Areas of low roughness promote air flow – discharging the city from warm, polluted air and supplying it with cool and fresh air – if they share specific parameters, are connected and penetrate the inner city with a country breeze. That is why mapping low roughness urban areas is important in better understanding urban climate.

Goal:
The goal of this study is to derive buildings (outlines and height) and high vegetation using LAStools and to use that data in mapping urban ventilation corridors for our case study area in Warsaw. There are many ways to map these; however using ALS data has certain advantages (Suder& Szymanowski 2014) in this case: DSMs can be easily derived, tree canopy (incl. height) can be joined to the analysis and buildings can be easily extracted. The outputs are then used as a basis for morphological analysis, like calculating frontal area index. LAStools has the considerable advantage of processing large quantities of data (~500 GB) efficiently.

Frontal area index calculation based on 3D building database

Data:
+ LiDAR provided by Central Documentation Center of Geodesy and Cartography
+ average pulse density 12 p/m^2
+ covers 517 km^2 (whole Warsaw)

LAStools processing:
1) quality checking of the data as described in several videos and blog posts [lasinfo, lasvalidate, lasoverlap, lasgrid, lasduplicate, lasreturnlas2dem]
2) reorganize data into sufficiently small tiles with buffers to avoid edge artifacts [lastile]
3) classify point clouds into vegetation and buildings [lasground, lasclassify]
4) normalize LiDAR heights [lasheight]
5) create triangulated, rasterized derivatives: DSM / DTM / nDSM / CHM [las2dem, blast2dem]
6) compute height-based metrics (e.g. ‘-avg’, ‘-std’, and ‘-p 50’) [lascanopy]
7) generate subsets during the workflow [lasclip]
8) generate building footprints [lasboundary]

References:
Heilig, G. K. (2012). World urbanization prospects: the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York.
Gal, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206.
Suder, A., & Szymanowski, M. (2014). Determination of ventilation channels in urban area: A case study of Wroclaw (Poland). Pure and Applied Geophysics, 171(6), 965-975.

LASmoons: Gudrun Norstedt

Gudrun Norstedt (recipient of three LASmoons)
Forest History, Department of Forest Ecology and Management
Swedish University of Agricultural Sciences, Umeå, Sweden

Background:
Until the end of the 17th century, the vast boreal forests of the interior of northern Sweden were exclusively populated by the indigenous Sami. When settlers of Swedish and Finnish ethnicity started to move into the area, colonization was fast. Although there is still a prospering reindeer herding Sami culture in northern Sweden, the old Sami culture that dominated the boreal forest for centuries or even millenia is to a large extent forgotten.
Since each forest Sami family formerly had a number of seasonal settlements, the density of settlements must have been high. However, only very few remains are known today. In the field, old Sami settlements can be recognized through the presence of for example stone hearths, storage caches, pits for roasting pine bark, foundations of certain types of huts, reindeer pens, and fences. Researchers of the Forest History section of the Department of Forest Ecology and Management have long been surveying such remains on foot. This, however, is extremely time consuming and can only be done in limited areas. Also, the use of aerial photographs is usually difficult due to dense vegetation. Data from airborne laser scanning should be the best way to find remains of the old forest Sami culture. Previous research has shown the possibilities of using airborne laser scanning data for detecting cultural remains in the boreal forest (Jansson et al., 2009; Koivisto & Laulamaa, 2012; Risbøl et al., 2013), but no studies have aimed at detecting remains of the forest Sami culture. I want to test the possibilities of ALS in this respect.

DTM from the Krycklan catchment, showing a row of hunting pits and (larger) a tar pit.

Goal:
The goal of my study is to test the potential of using LiDAR data for detecting cultural and archaeological remains on the ground in a forest area where Sami have been known to dwell during historical times. Since the whole of Sweden is currently being scanned by the National Land Survey, this data will be included. However, the average point density of the national data is only 0,5–1 pulses/m^2. Therefore, the study will be done in an established research area, the Krycklan catchment, where a denser scanning was performed in 2015. The Krycklan data set lacks ground point classification, so I will have to perform such a classification before I can proceed to the creation of a DTM. Having tested various kind of software, I have found that LAStools seems to be the most efficient way to do the job. This, in turn, has made me aware of the importance of choosing the right methods and parameters for doing a classification that is suitable for archaeological purposes.

Data:
The data was acquired with a multi-spectral airborne LiDAR sensor, the Optech Titan, and a Micro IRS IMU, operated on an aircraft flying at a height of about 1000 m and positioning was post-processed with the TerraPos software for higher accuracy.
The average pulse density is 20 pulse/m^2.
+ About 7 000 hectares were covered by the scanning. The data is stored in 489 tiles.

LAStools processing:
1) run a series of classifications of a few selected tiles with both lasground and lasground_new with various parameters [lasground and lasground_new]
2) test the outcomes by comparing it to known terrain to find out the optimal parameters for classifying this particular LiDAR point cloud for archaeological purposes.
3) extract the bare-earth of all tiles (using buffers!!!) with the best parameters [lasground or lasground_new]
4) create bare-earth terrain rasters (DTMs) and analyze the area [lasdem]
5) reclassify the airborne LiDAR data collected by the National Land Survey using various parameters to see whether it can become more suitable for revealing Sami cultural remains in a boreal forest landscape  [lasground or lasground_new]

References:
Jansson, J., Alexander, B. & Söderman, U. 2009. Laserskanning från flyg och fornlämningar i skog. Länsstyrelsen Dalarna (PDF).
Koivisto, S. & Laulamaa, V. 2012. Pistepilvessä – Metsien arkeologiset kohteet LiDAR-ilmalaserkeilausaineistoissa. Arkeologipäivät 2012 (PDF).
Risbøl, O., Bollandsås, O.M., Nesbakken, A., Ørka, H.O., Næsset, E., Gobakken, T. 2013. Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. Journal of Archaeological Science 40:4688–4700.

NRW Open LiDAR: Merging Points into Proper LAS Files

In the first part of this series we downloaded, compressed, and viewed some of the newly released open LiDAR data for the state of North Rhine-Westphalia. In the second part we look at how to merge the multiple point clouds provided back into single LAS or LAZ files that are as proper as possible. Follow along with a recent version of LAStools and a pair of DGM and DOM files for your area of interest. For downloading the LiDAR we suggest using the wget command line tool with option ‘-c’ that after interruption in transmission will restart where it left off.

In the first part of this series we downloaded the pair of DGM and DOM files for the City of Bonn. The DGM file and the DOM file are zipped archives that contain the points in 1km by 1km tiles stored as x, y, z coordinates with centimeter resolution. We had already converted these textual *.xyz files into binary *.laz files. We did this with the open source LASzip compressor that is distributed with LAStools as described in that blog post. We continue now with the assumption that you have converted all of the *.xyz files to *.laz files as described here.

Mapping from tile names of DGM and DOM archives to classification and return type of points.

The mapping from tile names in DGM and DOM archives to the classification and return type of points: lp = last return. fp = first return, ab,aw,ag = synthetic points

There are multiple tiles for each square kilometer as the LiDAR has been split into different files based on classification and return type. Furthermore there are also synthetic points that were created by the land survey department to replace LiDAR under bridges and along buildings for generating higher quality rasters. We want to combine all points of a square kilometer into a single LAZ tile as it is usually expected. Simply merging the multiple files per tile is not an option as this would result in loosing point classifications and return type information as well as in duplicating all single returns that are stored in more than one file. The folks at OpenNRW offer this helpful graphic to know what the acronyms above mean:

Illustration of how acronyms used in tile names correspond to point classification and type.

Illustration of how acronyms used in tile names correspond to point classification and type.

In the following we’ll be looking at the set of files corresponding to the UTM tile 32366 / 5622. We wanted an interesting area with large buildings, a bridge, and water. We were looking for a suitable area using the KML overlays generated in part one. The tile along the Rhine river selected in the picture below covers the old city hall, the opera house, and the “Kennedy Bridge” has a complete set of DGM and DOM files:

      3,501 dgm1l-ab_32366_5622_1_nw.laz
     16,061 dgm1l-ag_32366_5622_1_nw.laz
      3,269 dgm1l-aw_32366_5622_1_nw.laz
    497,008 dgm1l-brk_32366_5622_1_nw.laz
  7,667,715 dgm1l-lpb_32366_5622_1_nw.laz
 12,096,856 dgm1l-lpnb_32366_5622_1_nw.laz
     15,856 dgm1l-lpub_32366_5622_1_nw.laz

      3,269 dom1l-aw_32366_5622_1_nw.laz
 21,381,106 dom1l-fp_32366_5622_1_nw.laz
We find the name of the tiles that cover the "Kennedy Bridge" using the KML overlays generated in part one.

We find the name of the tile that covers the “Kennedy Bridge” using the KML overlays generated in part one.

We now assign classification codes and flags to the returns from the different files using las2las, merge them together with lasmerge, and recover single, first, and last return information with lasduplicate. We set classifications to bridge deck (17), ground (2), to unclassified (1), and to noise (7) for all returns in the files with the acronym ‘brk’ (= bridge points), the acronym ‘lpb’ (= last return ground), the acronym ‘lpnb’ (= last return non-ground), and the acronym ‘lpub’ (= last return under ground). with las2las and store the resulting files to a temporary folder.

las2las -i dgm1l-brk_32366_5622_1_nw.laz ^
        -set_classification 17 ^
        -odir temp -olaz

las2las -i dgm1l-lpb_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -odir temp -olaz

las2las -i dgm1l-lpnb_32366_5622_1_nw.laz ^
        -set_classification 1 ^
        -odir temp -olaz

las2las -i dgm1l-lpub_32366_5622_1_nw.laz ^
        -set_classification 7 ^
        -odir temp -olaz

Next we use the synthetic flag of the LAS format specification to flag any additional points that were added (no measured) by the survey department to generate better raster products. We set classifications to ground (2) and the synthetic flag for all points of the files with the acronym ‘ab’ (= additional ground) and the acronym ‘ag’ (= additional building footprint). We set classifications to water (9) and the synthetic flag for all points of the files with the acronym ‘aw’ (= additional water bodies). Files with acronym ‘aw’ appear both in the DGM and DOM archive. Obviously we need to keep only one copy.

las2las -i dgm1l-ab_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

las2las -i dgm1l-ag_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

las2las -i dgm1l-aw_32366_5622_1_nw.laz ^
        -set_classification 9 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

Using lasmerge we merge all returns from files with acronyms ‘brk’ (= bridge points), ‘lpb’ (= last return ground),  ‘lpnb’ (= last return non-ground), and ‘lpub’ (= last return under ground) into a single file that will then contain all of the (classified) last returns for this tile.

lasmerge -i temp\dgm1l-brk_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpb_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpnb_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpub_32366_5622_1_nw.laz ^
         -o temp\dgm1l-lp_32366_5622_1_nw.laz

Next we run lasduplicate three times to recover which points are single returns and which points are the first and the last return of a pair of points generated by the same laser shot. First we run lasduplicate with option ‘-unique_xyz’ to remove any xyz duplicates from the last return file. We also mark all surviving returns as the second of two returns. Similarly, we remove any xyz duplicates from the first return file and mark all survivors as the first of two returns. Finally we run lasduplicate with option ‘-single_returns’ with the unique last and the unique first return files as ‘-merged’ input. If a return with the exact same xyz coordinates appears in both files only the first copy is kept and marked as a single return. In order to keep the flags and classifications from the last return file, the order in which the last and first return files are listed in the command line is important.

lasduplicate -i temp\dgm1l-lp_32366_5622_1_nw.laz ^
             -set_return_number 2 -set_number_of_returns 2 ^
             -unique_xyz ^
             -o temp\last_32366_5622_1_nw.laz

lasduplicate -i dom1l-fp_32366_5622_1_nw.laz ^
             -set_return_number 1 -set_number_of_returns 2 ^
             -unique_xyz ^
             -o temp\first_32366_5622_1_nw.laz

lasduplicate -i temp\last_32366_5622_1_nw.laz ^
             -i temp\first_32366_5622_1_nw.laz ^
             -merged ^
             -single_returns ^
             -o temp\all_32366_5622_1_nw.laz

We then add the synthetic points with another call to lasmerge to obtain a LAZ file containing all points of the tile correctly classified, flagged, and return-numbered.

lasmerge -i temp\dgm1l-ab_32366_5622_1_nw.laz ^
         -i temp\dgm1l-ag_32366_5622_1_nw.laz ^
         -i temp\dgm1l-aw_32366_5622_1_nw.laz ^
         -i temp\all_32366_5622_1_nw.laz ^
         -o temp\merged_32366_5622_1_nw.laz

Optional: For more efficient use of this file in subsequent processing – and especially to accelerate area-of-interest queries with lasindex – it is often of great advantage to reorder the points in a spatially coherent manner. A simple call to lassort will rearrange the points along a space-filling curve such as a Hilbert curve or a Z-order curve.

lassort -i temp\merged_32366_5622_1_nw.laz ^
        -o bonn_32366_5622_1_nw.laz

Note that we also renamed the file because a good name can be useful if you find that file again in two years from now. Let’s have a look at the result with lasview.

lasview -i bonn_32366_5622_1_nw.laz

In lasview you can press <c> repeatedly to switch through all available coloring modes until you see the yellow (single) / red (first) / last (blue) coloring of the returns. The recovered return types are especially evident under vegetation, in the presence of wires, and along building edges. Press <x> to select an area of interest and press <x> again to inspect it more closely. Press <i> while hovering above a point to show its coordinates, classification, and return type.

We did each processing in separate steps to illustrate the overall workflow. The above sequence of LAStools command line calls can be shortened by combining multiple processing steps into one operation. This is left as an exercise for the advanced LAStools user … (-;

Acknowledgement: The LiDAR data of OpenNRW comes with a very permissible license. It is called “Datenlizenz Deutschland – Namensnennung – Version 2.0” or “dl-de/by-2-0” and allows data and derivative sharing as well as commercial use. It only requires us to name the source. We need to cite the “Land NRW (2017)” with the year of the download in brackets and specify the Universal Resource Identification (URI) for both the DOM and the DGM. Done. So easy. Thank you, OpenNRW … (-:

LASmoons: Jesús García Sánchez

Jesús García Sánchez (recipient of three LASmoons)
Landscapes of Early Roman Colonization (LERC) project
Faculty of Archaeology, Leiden University, The Netherlands

Background:
Our project Landscapes of Early Roman Colonization (LERC) has been studying the hinterland of the Latin colony of Aesernia (Molise region, Italy) using several non-destructive techniques, chiefly artefactual survey, geophysics, and interpretation of aerial photographs. Nevertheless large areas of the territory are covered by the dense forests of the Matese mountains, a ridge belonging the Apennine chain, or covered by bushes due to the abandonment of the countryside. The project won’t be complete without integrating the marginal, remote and forested areas into our study of the Roman hinterland. Besides, it’s also relevant to discuss the feasibility of LiDAR data sets in the study of Mediterranean landscapes and its role within contemporary Landscape Archaeology.

some clever caption

LiDAR coverage in Molise region, Italy.

Goal:
+ to study in detail forested areas in the colonial hinterland of Aesernia.
+ to found the correct parameters of the classification algorithm to be able to locate possible archaeological structures or to document appropriately those we already known.
+ to document and create new visualization of hill-top fortified sites that belong to the indigenous population and are currently poorly studied due to inaccessibility and forest coverage (Monte San Paolo, Civitalla, Castelriporso, etc.)
+ to demonstrate the archaeological potential of LiDAR data in Italy and help other scholars to work with that kind of data, explaining basic information about data quality, where and how to acquire imagery and examples of application in archaeology. A paper entitled “Working with ALS – LiDAR data in Central South Italy. Tips and experiences”, will be presented in the International Mediterranean Survey Workshop by the end of February in Athens.

Civitella hillfort (Longano, IS) and its local context: ridges and forest belonging to the Materse mountains and the Appenines.

Data:
Recently the LERC project has acquired a large LiDAR dataset created by the Italian Geoportale Nazionale and the Minisstero dell’Ambiente e della Tutella del Territorio e del Mare. The data was produced originally to monitor land-slides and erosive risk.
The average point resolution is 1 meter.
+ The data sets were cropped originally in 1 sq km. tiles by the Geoportale Nazionale for distribution purposes.

LAStools processing:
1) data is provided in *.txt files thus the first step is to create appropriate LAS files to work with [txt2las]
2) combine areas of circa 16 sq km (still fewer than 20 million points to be processed in one piece with LAStools) in the surroundings of the colony of Aesernia and in the Matese mountains [lasmerge]
3) assign the correct projection to the data [lasmerge or las2las]
4) extract the care-earth with the best-fitting parameters [lasground or lasground_new]
5) create bare-earth terrain rasters as a first step to visualize and analyze the area [lasdem]

Second German State Goes Open LiDAR

The floodgates of open geospatial data have opened in Germany. Days after reporting about the first state-wide release of open LiDAR, we are happy to follow up with a second wonderful open data story. The state of Thuringia (Thüringen) – also called the “green heart of Germany” – has also implemented an open geospatial data policy. This had already been announced in March 2016 but must have gone online just now. A reader of our last blog article pointed this out in the comments. And it’s not just LiDAR. You can download:

It all comes with the same permissible license as OpenNRW’s data. This is open data madness! Everything you could possibly hope for presented via a very functional download portal. Kudos to TLVermGeo (“Thüringisches Landesamt für Vermessung und Geoinformation”) for creating an open treasure cove of free-for-all geospatial data.

Let us have a look at the LiDAR. We use the interactive portal to zoom to an area of interest. With the recent rise of demagogues it cannot hurt to look at a stark reminder of where such demagoguery can lead. In his 1941 play “The Resistible Rise of Arturo Ui” – a satirical allegory on the rise of Adolf Hitler – Bertolt Brecht writes “… don’t rejoice too soon at your escape. The womb he crawled from is still going strong.”

We are downloading LiDAR data around the Buchenwald concentration camp. According to Wikipedia, it was established in July 1937 and was one of the largest on German soil. Today the remains of Buchenwald serve as a memorial and as a permanent exhibition and museum.

We download the 15 tiles surrounding the blue one: two on its left, two on its right and one corresponding row of five tiles above and below. Each of the 15 zipped archives contains a *.laz file and *.meta file. The *.laz file contains the LiDAR points and *.meta file contains the textual information below where “Lage” and “Höhe” refer to “horizontal” and “vertical”:

Datei: las_655_5653_1_th_2010-2013.laz
Erfassungsdatum: 2011-03
Erfassungsmethode: Airborne Laserscanning
Lasergebiet: Laser_04_2010
EPSG-Code Lage: 25832
EPSG-Code Höhe: 5783
Quasigeoid: GCG2005
Genauigkeit Lage: 0.12m
Genauigkeit Höhe: 0.04m
Urheber: (c) GDI-Th, Freistaat Thueringen, TLVermGeo

Next we will run a few quality checks on the 15 tiles by processing them with lasinfolasoverlap, lasgrid, and las2dem. We output all results into a folder named ‘quality’.

With lasinfo we create one text file per tile that summarizes its contents. The ‘-cd’ option computes the all return and last return density. The ‘-histo point_source 1’ option produces a histogram of point source IDs that are supposed to store which flight line each return came from. The ‘-odir’ and ‘-odix’ options specify the directory for the output and an appendix to the output file name. The ‘-cores 4’ option starts 4 processes in parallel, each working on a different tile.

lasinfo  -i las_*2010-2013.laz ^
         -cd ^
         -histo point_source 1 ^
         -odir quality -odix _info -otxt ^
         -cores 4

If you scrutinize the resulting text files you will find that the average last return density ranges from 6.29 to 8.13 and that the point source IDs 1 and 9999 seem to encode some special points. Likely those are synthetic points added to improve the derived rasters similar to the “ab”, “ag”, and “aw” files in the OpenNRW LiDAR. Odd is the lack of intermediate returns despite return numbers ranging all the way up to 7. Looks like only the first returns and the last returns are made available (like for the OpenNRW LiDAR). That will make those a bit sad who were planning to use this LiDAR for forest or vegetation mapping. The header of the *.laz files does not store geo-referencing information, so we will have to enter that manually. And the classification codes do not follow the standard ASPRS assignment. In red is our (currently) best guess what these classification codes mean:

[...]
histogram of classification of points:
 887223 ground (2) ground
 305319 wire guard (13) building
 172 tower (15) bridges
 41 wire connector (16) synthetic ground under bridges
 12286 bridge deck (17) synthetic ground under building
 166 Reserved for ... (18) synthetic ground building edge
 5642801 Reserved for ... (20) non-ground
[...]

With lasoverlap we can visualize how much overlap the flight lines have and the (potential miss-)alignment between them. We drop the synthetic points with point source IDs 1 and 9999 and add geo-referencing information with ‘-epsg 25832’ so that the resulting images can be displayed as Google Earth overlays. The options ‘-min_diff 0.1’ and ‘-max_diff 0.4’ map elevation differences of up +/- 10 cm to white. Above +/- 10 cm the color becomes increasingly red/blue with full saturation at +/- 40 cm or higher. This difference can only be computed for pixels with two or more overlapping flight lines.

lasoverlap  -i las_*2010-2013.laz ^
            -drop_point_source 1 ^
            -drop_point_source 9999 ^
            -min_diff 0.1 -max_diff 0.4 ^
            -odir quality -opng ^
            -epsg 25832 ^
            -cores 4

With lasgrid we check the density distribution of the laser pulses by computing the point density of the last returns for each 2 by 2 meter pixel and then mapping the computed density value to a false color that is blue for a density of 0 and red for a density of 10 or higher.

lasgrid  -i las_*2010-2013.laz ^
         -drop_point_source 1 ^
         -drop_point_source 9999 ^
         -keep_last ^
         -step 2 -point_density ^
         -false -set_min_max 0 10 ^
         -odir quality -odix _d_0_10 -opng ^
         -epsg 25832 ^
         -cores 4
Pulse density variation due to flight line overlap and flight turbulence.

Pulse density variation due to flight line overlap is expected. But also the contribution of flight turbulence is quite significant.

With las2dem we can check the quality of the already existing ground classification in the LiDAR by producing a hillshaded image of a DTM for visual inspection. Based on our initial guess on the classification codes (see above) we keep those synthetic points that improve the DTM (classification codes 16, 17, and 18) in addition to the ground points (classification code 2).

las2dem  -i las_*2010-2013.laz ^
         -keep_class 2 16 17 18 ^
         -step 1 ^
         -hillshade ^
         -odir quality -odix _shaded_dtm -opng ^
         -epsg 25832 ^
         -cores 4
Problems in the ground classification of LiDAR points are often visible in a hillshaded DTM raster.

Problems in the ground classification of LiDAR points are often visible in a hillshaded DTM.

Wow. We see a number of ground disturbances in the resulting hillshaded DTM. Some of them are expected because if you read up on the history of the Buchenwald concentration camp you will learn that in 1950 large parts of the camp were demolished. However, the laser finds the remnants of those barracks and buildings as clearly visible ground disturbances under the canopy of the dense forest that has grown there since. And then there are also these bumps that look like bomb craters. Are those from the American bombing raid on August 24, 1944?

We are still not entirely sure what those “bumps” arem but our initially assumption that all of those would have to be bomb craters from that fatal American bombing raid on August 24, 1944 seems to be wrong. Below is a close-up with lasview of the triangulated and shaded ground points from the lower right corner of tile ‘las_656_5654_1_th_2010-2013.laz’.

Close-up in lasview on the bumbs in the ground.

Close-up in lasview on the bumbs in the ground.

We are not sure if all the bumps we can see here are there for the same reason. But we found an old map and managed to overlay it on Google Earth. It suggest that at least the bigger bumps are not bomb craters. On the map they are labelled as “Erdfälle” which is German for “sink hole”.

We got a reminder on the danger of demagogues as well as a glimpse into conflict archaeology and geomorphology with this open LiDAR download and processing exercise. If you want to explore this area any further you can either download the LiDAR and download LAStools and process the data yourself or simply get our KML files here.

Acknowledgement: The LiDAR data of TLVermGeo comes with a very permissible license. It is called “Datenlizenz Deutschland – Namensnennung – Version 2.0” or “dl-de/by-2-0” and allows data and derivative sharing as well as commercial use. It only requires us to name the source. We need to cite the “geoportal-th.de (2017)” with the year of the download in brackets and should specify the Universal Resource Identification (URI). We have not found this yet and use this URL as a placeholder until we know the correct one. Done. So easy. Thank you, geoportal Thüringen … (-: