Complete LiDAR Processing Pipeline: from raw Flightlines to final Products

This tutorial serves as an example for a complete end-to-end workflow that starts with raw LiDAR flightlines (as they may be delivered by a vendor) to final classified LiDAR tiles and derived products such as raster DTM, DSM, and SHP files with contours, building footprint and vegetation layers. The three example flightlines we are using here were flown in Ayutthaya, Thailand with a RIEGL LMS Q680i LiDAR scanner by Asian Aerospace Services who are based at the Don Mueang airport in Bangkok from where they are serving South-East-Asia and beyond. You can download them here:

Quality Checking

The minimal quality checks consist of generating textual reports (lasinfo & lasvalidate), inspecting the data visually (lasview), making sure alignment and overlap between flightlines fulfill expectations (lasoverlap), and measuring pulse density per square meter (lasgrid). Additional checks for points replication (lasduplicate), completeness of all returns per pulse (lasreturn), and validation against external ground control points (lascontrol) may also be performed.

lasinfo -i Ayutthaya\strips_raw\*.laz ^
        -cd ^
        -histo z 5 ^
        -histo intensity 64 ^
        -odir Ayutthaya\quality -odix _info -otxt ^
        -cores 3

lasvalidate -i Ayutthaya\strips_raw\*.laz ^
            -o Ayutthaya\quality\validate.xml

The lasinfo report generated with the command line shown computes the average density for each flightline and also generates two histograms, one for the z coordinate with a bin size of 5 meter and one for the intensity with a bin size of 64. The resulting textual descriptions are output into the specified quality folder with an appendix ‘_info’ added to the original file name. Perusing these reports tells you that there are up to 7 returns per pulse, that the average pulse density per flightline is between 7.1 to 7.9 shots per square meter, that the point source IDs of the points are already populated correctly, that there are isolated points far above and far below the scanned area, and that the intensity values range from 0 to 1023 with the majority being below 400. The warnings in the lasinfo and the lasvalidate reports about the presence of return numbers 6 and 7 have to do with the history of the LAS format and can safely be ignored.

lasoverlap -i Ayutthaya\strips_raw\*.laz ^
           -files_are_flightlines ^
           -min_diff 0.1 -max_diff 0.3 ^
           -odir Ayutthaya\quality -o overlap.png

This results in two color illustrations. One image shows the flightline overlap with blue indicating one flightline, turquoise indicating two, and yellow indicating three flightlines. Note that wet areas (rivers, lakes, rice paddies, …) without LiDAR returns affect this visualization. The other image shows how well overlapping flightlines align. Their vertical difference is color coded with while meaning less than 10 cm error while saturated red and blue indicate areas with more than 30 cm positive or negative difference.

One pixel wide red and blue along building edges and speckles of red and blue in vegetated areas are normal. We need to look-out for large systematic errors where terrain features or flightline outlines become visible. If you click yourself through this photo album you will eventually see typical examples (make sure to read the comments too). One area slightly below the center looks suspicious. We load the PNG into the GUI to pick this area for closer inspection with lasview.

lasview -i Ayutthaya\strips_raw\*.laz -gui

Why these flightline differences exist and whether they are detrimental to your purpose are questions that you will have to explore further. For out purpose this isolated difference was noted but will not prevent us from proceeding further. Next we want to investigate the pulse density. We do this with lasgrid. We know that the average last return density per flightline is between 7.1 to 7.9 shots per square meter. We set up the false color map for lasgrid such that it is blue when the last return density drops to 5 shots (or less) per square meter and such that it is red when the last return density reaches 10 shots (or more).

lasgrid -i Ayutthaya\strips_raw\*.laz -merged ^
        -keep_last ^
        -step 2 -density ^
        -false -set_min_max 4 8 ^
        -odir Ayutthaya\quality -o density_4ppm_8ppm.png

The last return density per square meter mapped to a color: blue is 5 or less, red is 10 or more.

The last return density image clearly shows how the density increases to over 10 pulses per square meter in all areas of flightline overlap. However, as there are large parts covered by only one flightline their density is the one that should be considered. We note great variations in density along the flightlines. Those have to do with aircraft movement and in particular with the pitch. When the nose of the plane goes up even slightly, the gigantic “fan of laser pulses” (that can be thought of as being rigidly attached at the bottom perpendicular to the aircraft flight direction) is moving faster forward on the ground far below and therefore covers it with fewer shots per square meter. Conversely when the nose of the plane goes down the spacing between scan lines far below the plane are condensed so that the density increases. Inclement weather and the resulting airplane pitch turbulence can have a big impact on how regular the laser pulse spacing is on the ground. Read this article for more on LiDAR pulse density and spacing.

LiDAR Preparation

When you have airborne LiDAR in flightlines the first step is to tile the data into square tiles that are typically 1000 by 1000 or – for higher density surveys – 500 by 500 meters in size. This can be done with lastile. We also add a buffer of 30 meters to each tile. Why buffers are important for tile-based processing is explained here. We choose 30 meters as this is larger than any building we expect in this area and slightly larger than the ‘-step’ size we use later when classifying the points into ground and non-ground points with lasground.

lastile -i Ayutthaya\strips_raw\*.laz ^
        -tile_size 500 -buffer 30 -flag_as_withheld ^
        -odir Ayutthaya\tiles_raw -o ayu.laz

NOTE: Usually you will have to add ‘-files_are_flightlines’ or ‘-apply_file_source_ID’ to the lastile command shown above in order to preserve the information which points is from which flightline. We do not have to do this here as evident from the lasinfo reports we generated earlier. Not only is the file source ID in the LAS header is correctly set to 2, 3, or 4 reflecting the intended flightline numbering evident from the file names. Also the point source ID of each point is already set to the correct value 2, 3, or 4. For more info see this or this discussion from the LAStools user forum.

Next we classify isolated points that are far from most other points with lasnoise into the (default) classification code 7. See the README file for the meaning of the parameters and play around with different setting to get a feel for how to make this process more or less aggressive.

lasnoise -i Ayutthaya\tiles_raw\ayu*.laz ^
         -step_xy 4 -step_z 2 -isolated 5 ^
         -odir Ayutthaya\tiles_denoised -olaz ^
         -cores 4

Especially for ground classification it is important that low noise points are excluded. You should inspect a number of tiles with lasview to make sure the low noise are all pink now if you color them by classification.

lasview -i Ayutthaya\tiles_denoised\ayu*.laz -gui

While the algorithms in lasground are designed to withstand a few noise points below the ground, you will find that it will include them into the ground model if there are too many of them. Hence, it is important to tell lasground to ignore these noise points. For the other parameters used see the README file of lasground.

lasground -i Ayutthaya\tiles_denoised\ayu*.laz ^
          -ignore_class 7 ^
          -city -ultra_fine ^
          -compute_height ^
          -odir Ayutthaya\tiles_ground -olaz ^
          -cores 4

You should visually check the resulting ground classification of each tile with lasview by selecting smaller subsets (press ‘x’, draw a rectangle, press ‘x’ again, use arrow keys to walk) and then switch back and forth between a triangulation of the ground points (press ‘g’ and then press ‘t’) and a triangulation of last returns (press ‘l’ and then press ‘t’). See the README of lasview for more information on those hotkeys.

lasview -i Ayutthaya\tiles_ground\ayu*.laz -gui

This way I found at least one tile that should be reclassified with ‘-metro’ instead of ‘-city’ because it still contained one large building in the ground classification. Alternatively you can correct miss-classifications manually using lasview as shown in the next few screen shots.

This is an optional step for advanced users who have a license. In case you managed to do such a manual edit and saved it as a LAY file using LASlayers (see the README file of lasview) you can overwrite the old file with:

laslayers -i Ayutthaya\tiles_ground\ayu_669500_1586500.laz -ilay ^
          -o Ayutthaya\tiles_ground\ayu_669500_1586500_edited.laz

move Ayutthaya\tiles_ground\ayu_669500_1586500_edit.laz ^
     Ayutthaya\tiles_ground\ayu_669500_1586500.laz

The next step classifies those points that are neither ground (2) nor noise (7) into building (or rather roof) points (class 6) and high vegetation points (class 5). For this we use lasclassify with the default parameters that only considers points that are at least 2 meters above the classified ground points (see the README for details on all available parameters).

lasclassify -i Ayutthaya\tiles_ground\ayu*.laz ^
            -ignore_class 7 ^
            -odir Ayutthaya\tiles_classified -olaz ^
            -cores 4

We  check the classification of each tile with lasview by selecting smaller subsets (press ‘x’, draw a rectangle, press ‘x’ again) and by traversing with the arrow keys though the point cloud. You will find a number of miss-classifications. Boats are classified as buildings, water towers or complex temple roofs as vegetation, … and so on. You could use lasview to manually correct any classifications that are really important.

lasview -i Ayutthaya\tiles_classified\ayu*.laz -gui

Before delivering the classified LiDAR tiles to a customer or another user it is imperative to remove the buffers that were carried through all computations to avoid artifacts along the tile boundary. This can also be done with lastile.

lastile -i Ayutthaya\tiles_classified\ayu*.laz ^
        -remove_buffer ^
        -odir Ayutthaya\tiles_final -olaz ^
        -cores 4

Together with the tiling you may want to deliver a tile overview file in KML format (or in SHP format) that you can easily generate with lasboundary using this command line:

lasboundary -i Ayutthaya\tiles_final\ayu*.laz ^
            -use_bb ^
            -overview -labels ^
            -o Ayutthaya\tiles_overview.kml

The small KML file generated b lasboundary provides a quick overview where tiles are located, their names, their bounding box, and the number of points they contain.

Derivative production

The most common derivative product produced from LiDAR data is a Digital Terrain Model (DTM) in form of an elevation raster. This can be obtained by interpolating the ground points with a triangulation (i.e. a Delaunay TIN) and by sampling the TIN at the center of each raster cell. The pulse density of well over 4 shots per square meter definitely supports a resolution of 0.5 meter for the raster DTM. From the ground-classified tiles with buffer we compute the DTM using las2dem as follows:

las2dem -i Ayutthaya\tiles_ground\ayu*.laz ^
        -keep_class 2 ^
        -step 0.5 -use_tile_bb ^
        -odir Ayutthaya\tiles_dtm -obil ^
        -cores 4

It’s important to add ‘-use_tile_bb’ to the command line which limits the raster generation to the original tile sizes of 500 by 500 meters in order not to rasterize the buffers that are extending the tiles 30 meters in each direction. We used the BIL format so that we inspect the resulting elevation rasters with lasview:

lasview -i Ayutthaya\tiles_dtm\ayu*.bil -gui

To create a hillshaded version of the DTM you can use your favorite raster processing package such as GDAL or GRASS but you could also use the BLAST extension of LAStools and create a large seamless image with blast2dem as follows:

blast2dem -i Ayutthaya\tiles_dtm\ayu*.bil -merged ^
          -step 0.5 -hillshade -epsg 32647 ^
          -o Ayutthaya\dtm_hillshade.png

Because blast2dem does not parse the PRJ files that accompany the BIL rasters we have to specify the EPSG code explicitly to also get a KML file that allows us to visualize the LiDAR in Google Earth.

A a hillshading of the merged DTM rasters produced with blast2dem.

Next we generate a Digital Surface Model (DSM) that includes the highest objects that the laser has hit. We use the spike-free algorithm that is implemented in las2dem that creates a triangulation of the highest returns as follows:

las2dem -i Ayutthaya\tiles_denoised\ayu*.laz ^
        -drop_class 7 ^
        -step 0.5 -spike_free 1.2 -use_tile_bb ^
        -odir Ayutthaya\tiles_dsm -obil ^
        -cores 4

We used 1.0 as the freeze value for the spike free algorithm because this is about three times the average last return spacing reported in the individual lasinfo reports generated during quality checking. Again we inspect the resulting rasters with lasview:

lasview -i Ayutthaya\tiles_dsm\ayu*.bil -gui

For reason of comparison we also generate the DSM rasters using a simple first-return interpolation again with las2dem as follows:

las2dem -i Ayutthaya\tiles_denoised\ayu*.laz ^
        -drop_class 7 -keep_first ^
        -step 0.5 -use_tile_bb ^
        -odir Ayutthaya\tiles_dsm -obil ^
        -cores 4

A few direct side-by-side comparison between a spike-free DSM and a first-return DSM shows the difference that are especially noticeable along building edges and in large trees.

Another product that we can easily create are building footprints from the automatically classified roofs using lasboundary. Because the tool is quite scalable we can simply on-the-fly merge the final tiles. This also avoids including duplicate points from the tile buffer whose classifications are also often less accurate.

lasboundary -i Ayutthaya\tiles_final\ayu*.laz -merged ^
            -keep_class 6 ^
            -disjoint -concavity 1.1 ^
            -o Ayutthaya\buildings.shp

Similarly we can use lasboundary to create a vegetation layer from those points that were automatically classified as high vegetation.

lasboundary -i Ayutthaya\tiles_final\ayu*.laz -merged ^
             -keep_class 5 ^
             -disjoint -concavity 3 ^
             -o Ayutthaya\vegetation.shp

We can also produce 1.0 meter contour lines from the ground classified points. However, for nicer contours it is beneficial to first generate a subset of the ground points with lasthin using option ‘-contours 1.0’ as follows:

lasthin -i Ayutthaya\tiles_final\ayu*.laz ^
        -keep_class 2 ^
        -step 1.0 -contours 1.0 ^
        -odir Ayutthaya\tiles_temp -olaz ^
        -cores 4

We then merge all subsets of ground points from those temporary tiles on-the-fly into one (using the ‘-merged’ option) and let blast2iso from the BLAST extension of LAStools generate smoothed and simplified 1 meter contours as follows:

blast2iso -i Ayutthaya\tiles_temp\ayu*.laz -merged ^
          -iso_every 1.0 ^
          -smooth 2 -simplify_length 0.5 -simplify_area 0.5 -clean 5.0 ^
          -o Ayutthaya\contours_1m.shp

Finally we composite all of our derived LiDAR products into one map using QGIS and then fuse it with data from OpenStreetMap that we’ve downloaded from BBBike. Here you can download the OSM data that we use.

It’s in particular interesting to compare the building footprints that were automatically derived from our LiDAR processing pipeline with those mapped by OpenStreetMap volunteers. We immediately see that there is a lot of volunteering work left to do and the LiDAR-derived data can assist us in directing those mapping efforts. A closer look reveals the (expected) quality difference between hand-mapped and auto-generated data.

The OSM buildings are simpler. These polygons are drawn and divided into logical units by a human. They are individually verified and correspond to actual buildings. However, they are less aligned with the Google Earth satellite image. The LiDAR-derived buildings footprints are complex because lasboundary has no logic to simplify the complicated polygonal chains that enclose the points that were automatically classified as roof into rectilinear shapes or to break directly adjacent roof points into separate logical units. However, most buildings are found (but also objects that are not buildings) and their geospatial alignment is as good as that of the LiDAR data.

LASmoons: Chris J. Chandler

Chris J. Chandler (recipient of three LASmoons)
School of Geography
University of Nottingham, UNITED KINGDOM

Background:
Wetlands provide a range of important ecosystem services: they store carbon, regulate greenhouse gas emissions, provide flood protection as well as water storage and purification. Preserving these services is critical to achieve sustainable environmental management. Currently, mangrove forests are protected in Mexico, however, fresh water wetland forests, which also have high capacity for storing carbon both in the trees and in the soil, are not protected under present legislation. As a result, coastal wetlands in Mexico are threatened by conversion to grazing areas, drainage for urban development and pollution. Given these threats, there is an urgent need to understand the current state and distribution of wetlands to inform policy and protect the ecosystem services provided by these wetlands.
In this project we will combine field data collection, satellite data (i.e. optical remote sensing, radar and LiDAR remote sensing) and modelling to provide an integrated technology for assessing the value of a range of ecosystem services, tested to proof of concept stage based on carbon storage. The outcome of the project will be a tool for mapping the value of a range of ecosystem services. These maps will be made directly available to local stakeholders including policy makers and land users to inform policy regarding forest protection/legislation and aid development of financial incentives for local communities to protect these services.

Wetland classification in the Chiapas region of Mexico

Goal:
At this stage of the project we have characterized wetlands for three priority areas in Mexico (Pantanos de Centla, La Encrucijada and La Mancha). Next stage is the up scaling of the field data at the three study sites using LiDAR data for producing high quality Canopy Height Model (CHM), which has been of great importance for biomass estimation (Ferraz et al., 2016). A high quality CHM will be achieved using LAStools software.

Data:
+
LiDAR provided by the Mexican National Institute of Statistics and Geography (INEGI)
+ average height: 5500 m, mirror angle: +/- 30 degrees, speed: 190 knots
+ collected with Cessna 441, Conquest II system at 1 pts/m².

LAStools processing:
1)
create 1000 meter tiles with 35 meter buffer to avoid edge artifacts [lastile]
2) classify point clouds into ground and non-ground [lasground]
3) normalize height of points above the ground [lasheight]
4) create a Digital Terrain and Surface Model (DTM and DSM) [las2dem]
5) generate a spike-free Canopy Height Model (CHM) as described here and here [las2dem]
6) compute various metrics for each plot and the normalized tiles [lascanopy]

References:
Ferraz, A., Saatchi, S., Mallet, C., Jacquemoud S., Gonçalves G., Silva C.A., Soares P., Tomé, M. and Pereira, L. (2016). Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory. Remote Sensing, 8(8), 653.

Removing Excessive Low Noise from Dense-Matching Point Clouds

Point clouds produced with dense-matching by photogrammetry software such as SURE, Pix4D, or Photoscan can include a fair amount of the kind of “low noise” as seen below. Low noise causes trouble when attempting to construct a Digital Terrain Model (DTM) from the points as common algorithm for classifying points into ground and non-ground points – such as lasground – tend to “latch onto” those low points, thereby producing a poor representation of the terrain. This blog post describes one possible LAStools workflow for eliminating excessive low noise. It was developed after a question in the LAStools user forum by LASmoons holder Muriel Lavy who was able to share her noisy data with us. See this, this, this, thisthis, and this blog post for further reading on this topic.

Here you can download the dense matching point cloud that we are using in the following work flow:

We leave the usual inspection of the content with lasinfolasview, and lasvalidate that we always recommend on newly obtained data as an exercise to the reader. Note that a check for proper alignment of flightlines with lasoverlap that we consider mandatory for LiDAR data is not applicable for dense-matching points.

With lastile we turn the original file with 87,261,083 points into many smaller 500 by 500 meter tiles for efficient multi-core processing. Each tile is given a 25 meter buffer to avoid edge artifacts. The buffer points are marked as withheld for easier on-the-fly removal. We add a (terser) description of the WGS84 UTM zone 32N to each tile via the corresponding EPSG code 32632:
lastile -i muriel\20161127_Pancalieri_UTM.laz ^
        -tile_size 500 -buffer 25 -flag_as_withheld ^
        -epsg 32632 ^
        -odir muriel\tiles_raw -o panca.laz
Because dense-matching points often have a poor point order in the files they get delivered in we use lassort to rearrange them into a space-filling curve order as this will speed up most following processing steps:
lassort -i muriel\tiles_raw\panca*.laz ^
        -odir muriel\tiles_sorted -olaz ^
        -cores 7
We then run lasthin to reclassify the highest point of every 2.5 by 2.5 meter grid cell with classification code 8. As the spacing of the dense-matched points is around 40 cm in both x and y, around 40 points will fall into each such grid cell from which the highest is then classified as 8:
lasthin -i muriel\tiles_sorted\panca*.laz ^
        -step 2.5 ^
        -highest -classify_as 8 ^
        -odir muriel\tiles_thinned -olaz ^
        -cores 7
Considering only those points classified as 8 in the last step we then run lasnoise to find points that are highly isolated in wide and flat neighborhoods that are then reclassified as 7. See the README file of lasnoise for a detailed explanation of the different parameters:
lasnoise -i muriel\tiles_thinned\panca*.laz ^
         -ignore_class 0 ^
         -step_xy 5 -step_z 0.1 -isolated 4 ^
         -classify_as 7 ^
         -odir muriel\tiles_isolated -olaz ^
         -cores 7
Now we run a temporary ground classification of only (!!!) on those points that are still classified as 8 using the default parameters of lasground. Hence we only use the points that were the highest points on the 2.5 by 2.5 meter grid and that were not classified as noise in the previous step. See the README file of lasground for a detailed explanation of the different parameters:
lasground -i muriel\tiles_isolated\panca*.laz ^
          -city -ultra_fine -ignore_class 0 7 ^
          -odir muriel\tiles_temp_ground -olaz ^
          -cores 7
The result of this temporary ground filtering is then merely used to mark all points that are 0.5 meter below the triangulated TIN of these temporary ground points with classification code 12 using lasheight. See the README file of lasheight for a detailed explanation of the different parameters:
lasheight -i muriel\tiles_temp_ground\panca*.laz ^
          -do_not_store_in_user_data ^
          -classify_below -0.5 12 ^
          -odir muriel\tiles_temp_denoised -olaz ^
          -cores 7
In the resulting tiles the low noise (but also many points above the ground) are now marked and in a final step we produce properly classified denoised tiles by re-mapping the temporary classification codes to conventions that are more consistent with the ASPRS LAS specification using las2las:
las2las -i muriel\tiles_temp_denoised\panca*.laz ^
        -change_classification_from_to 1 0 ^
        -change_classification_from_to 2 0 ^
        -change_classification_from_to 7 0 ^
        -change_classification_from_to 12 7 ^
        -odir muriel\tiles_denoised -olaz ^
        -cores 7
Let us visually check what each of the above steps has produced by zooming in on a 300 meter by 100 meter strip of points with the bounding box (388500,4963125) to (388800,4963225) in tile ‘panca_388500_4963000.laz’:
The final classification of all points that are not already classified as noise (7) into ground (2) or non-ground (1) was done with a final run of lasground. See the README file of lasground for a detailed explanation of the different parameters:
lasground -i muriel\tiles_denoised\panca*.laz ^
          -ignore_class 7 ^
          -city -ultra_fine ^
          -odir muriel\tiles_ground -olaz ^
          -cores 7
Then we create a seamless hill-shaded DTM tiles by triangulating all the points classified as ground into a temporary TIN (including those in the 25 meter buffer) and then rasterizing only the inner 500 meter by 500 meter of each tile with option ‘-use_tile_bb’ of las2dem. For more details on the importance of buffers in tile-based processing see this blog post here.
las2dem -i muriel\tiles_ground\panca*.laz ^
        -keep_class 2 ^
        -step 1 -hillshade ^
        -use_tile_bb ^
        -odir muriel\tiles_dtm -opng ^
        -cores 7

And here the original DSM side-by-side with resulting DTM after low noise removal. One dense forested area near the center of the data was not entirely removed due to the lack of ground points in this area. Integrating external ground points or manual editing with lasview are two possible way to rectify these few remaining errors …

Integrating External Ground Points in Forests to Improve DTM from Dense-Matching Photogrammetry

The biggest problem of generating a Digital Terrain Model (DTM) from the photogrammetric point clouds that are produced from aerial imagery with dense-matching software such as SURE, Pix4D, or Photoscan is dense vegetation: when plants completely cover the terrain not a single point is generated on the ground. This is different for LiDAR point clouds as the laser can even penetrate dense multi-level tropical forests. The complete lack of ground points in larger vegetated areas such as closed forests or dense plantations means that the many processing workflows for vegetation analysis that have been developed for LiDAR cannot be used for photogrammetric point clouds  … unless … well unless we are getting those missing ground points some other way. In the following we see how to integrate external ground points to generate a reasonable DTM under a dense forest with LAStools. See this, this, this, this, and this article for further reading.

Here you can download the dense matching point cloud, the manually collected ground points, and the forest stand delineating polygon that we are using in the following example work flow:

We leave the usual inspection of the content with lasinfo and lasview that we always recommend on newly obtained data as an exercise to the reader. Using las2dem and lasgrid we created the Google Earth overlays shown above to visualize the extent of the dense matched point cloud and the distribution of the manually collected ground points:

las2dem -i DenseMatching.laz ^
        -thin_with_grid 1.0 ^
        -extra_pass ^
        -step 2.0 ^
        -hillshade ^
        -odix _hill_2m -opng

lasgrid -i ManualGround.laz ^
        -set_RGB 255 0 0 ^
        -step 10 -rgb ^
        -odix _grid_10m -opng

Attempts to ground-classify the dense matching point cloud directly are futile as there are no ground points under the canopy in the heavily forested area. Therefore 558 ground points were manually surveyed in the forest of interest that are around 50 to 120 meters apart from another. We show how to integrate these points into the dense matching point cloud such that we can successfully extract bare-earth information from the data.

In the first step we “densify” the manually collected ground points by interpolating them with triangles onto a raster of 2 meter resolution that we store as LAZ points with las2dem. You could consider other interpolation schemes to “densify” the ground points, here we use simple linear interpolation to prove the concept. Due to the varying distance between the manually surveyed ground points we allow interpolating triangles with edge lengths of up to 125 meters. These triangles then also cover narrow open areas next to the forest, so we clip the interpolated ground points against the forest stand delineating polygon with lasclip to classify those points that are really in the forest as “key points” (class 8) and all others as “noise” (class 7).

las2dem -i ManualGround.laz ^
        -step 2 ^
        -kill 125 ^
        -odix _2m -olaz

lasclip -i ManualGround_2m.laz ^
        -set_classification 7 ^ 
        -poly forest.shp ^
        -classify_as 8 -interior ^
        -odix _forest -olaz

Below we show the resulting densified ground points colored by elevation that survive the clipping against the forest stand delineating polygon and were classified as “key points” (class 8). The interpolated ground points in narrow open areas next to the forest that fall outside this polygon were classified as “noise” (class 7) and are shown in violet. They will be dropped in the next step.

We then merge the dense matching points with the densified manual ground points (while dropping all the violet points marked as noise) as input to lasthin and reclassify the lowest point per 1 meter by 1 meter with a temporary code (here we use class 9 that usually refers to “water”). Only the subset of lowest points that receives the temporary classification code 9 will be used for ground classification later.

lasthin -i DenseMatching.laz ^
        -i ManualGround_2m_forest.laz ^
        -drop_class 7 ^
        -merged ^
        -lowest -step 1 -classify_as 9 ^
        -o DenseMatchingAndDensifiedGround.laz

We use the GUI of lasview to pick several interesting areas for visual inspection. The selected points load much faster when the LAZ file is spatially indexed and therefore we first run lasindex. For better orientation we also load the forest stand delineating polygon as an overlay into the GUI.

lasindex -i DenseMatchingAndDensifiedGround.laz 

lasview -i DenseMatchingAndDensifiedGround.laz -gui

We pick the area shown below that contains the target forest with manually collected and densified ground points and a forested area with only dense matching points. The difference could not be more drastic as the visualizations show.

Now we run ground classification using lasground with option ‘-town’ using only the points with the temporary code 9 by ignoring all other classifications 0 and 8 in the file. We leave the temporary classification code 9 unchanged for all the points that were not classified with “ground” code 2 so we can visualize later which ones those are.

lasground -i DenseMatchingAndDensifiedGround.laz ^
          -ignore_class 0 8 ^
          -town ^
          -non_ground_unchanged ^
          -o GroundClassified.laz

We again use the GUI of lasview to pick several interesting areas after running lasindex and again load the forest stand delineating polygon as an overlay into the GUI.

lasindex -i GroundClassified.laz 

lasview -i GroundClassified.laz -gui

We pick the area shown below that contains all three scenarios: the target forest with manually collected and densified ground points, an open area with only dense matching points, and a forested area with only dense matching points. The result is as expected: in the target forest the manually collected ground points are used as ground and in the open area the dense-matching points are used as ground. But there is no useful ground in the other forested area.

Now we can compute the heights of the points above ground for our target forest with lasheight and either replace the z elevations in the file of store them separately as “extra bytes”. Then we can compute, for example, a Canopy Height Model (CHM) that color codes the height of the vegetation above the ground with lasgrid. Of course this will only be correct in the target forest where we have “good” ground but not in the other forested areas. We also compute a hillshaded DTM to be able to visually inspect the topography of the generated terrain model.

lasheight -i GroundClassified.laz ^
          -store_as_extra_bytes ^
          -o GroundClassifiedWithHeights.laz

lasgrid -i GroundClassifiedWithHeights.laz ^
        -step 2 ^
        -highest -attribute 0 ^
        -false -set_min_max 0 25 ^
        -o chm.png

las2dem -i GroundClassified.laz ^
        -keep_class 2 -extra_pass ^
        -step 2 ^ 
        -hillshade ^
        -o dtm.png

Here you can download the resulting color-coded CHM and the resulting hill-shaded DTM as Google Earth KMZ overlays. Clearly the resulting CHM is only meaningful in the target forest where we used the manually collected ground points to create a reasonable DTM. In the other forested areas the ground is only correct near the forest edges and gets worse with increasing distance from open areas. The resulting DTM exhibits some interesting looking  bumps in the middle of areas with manually collected ground point. Those are a result of using the dense-matching points as ground whenever their elevation is lower than that of the manually collected points (which is decided in the lasthin step). Whether those bumps represent true elevations of are artifacts of low erroneous elevation from dense-matching remains to be investigated.

For forests on complex and steep terrain the number of ground points that needs to be manually collected may make such an approach infeasible in practice. However, maybe you have another source of elevation, such as a low-resolution DTM of 10 or 25 meter provided by your local government. Or maybe even a high resolution DTM of 1 or 2 meter from a LiDAR survey you did several years ago. While the forest may have grown a lot in the past years, the ground under the forest will probably not have changed much …

LASmoons: Marzena Wicht

Marzena Wicht (recipient of three LASmoons)
Department of Photogrammetry, Remote Sensing and GIS
Warsaw University of Technology, Poland.

Background:
More than half of human population (Heilig 2012) suffers from many negative effects of living in cities: increased air pollution, limited access to the green areas, Urban Heat Island (UHI) and many more. To mitigate some of these effects, many ideas came up over the years: reducing the surface albedo, the idea of the Garden City, green belts, and so on. Increasing horizontal wind speed might actually improve both, the air pollution dispersion and the thermal comfort in urban areas (Gál & Unger 2009). Areas of low roughness promote air flow – discharging the city from warm, polluted air and supplying it with cool and fresh air – if they share specific parameters, are connected and penetrate the inner city with a country breeze. That is why mapping low roughness urban areas is important in better understanding urban climate.

Goal:
The goal of this study is to derive buildings (outlines and height) and high vegetation using LAStools and to use that data in mapping urban ventilation corridors for our case study area in Warsaw. There are many ways to map these; however using ALS data has certain advantages (Suder& Szymanowski 2014) in this case: DSMs can be easily derived, tree canopy (incl. height) can be joined to the analysis and buildings can be easily extracted. The outputs are then used as a basis for morphological analysis, like calculating frontal area index. LAStools has the considerable advantage of processing large quantities of data (~500 GB) efficiently.

Frontal area index calculation based on 3D building database

Data:
+ LiDAR provided by Central Documentation Center of Geodesy and Cartography
+ average pulse density 12 p/m^2
+ covers 517 km^2 (whole Warsaw)

LAStools processing:
1) quality checking of the data as described in several videos and blog posts [lasinfo, lasvalidate, lasoverlap, lasgrid, lasduplicate, lasreturnlas2dem]
2) reorganize data into sufficiently small tiles with buffers to avoid edge artifacts [lastile]
3) classify point clouds into vegetation and buildings [lasground, lasclassify]
4) normalize LiDAR heights [lasheight]
5) create triangulated, rasterized derivatives: DSM / DTM / nDSM / CHM [las2dem, blast2dem]
6) compute height-based metrics (e.g. ‘-avg’, ‘-std’, and ‘-p 50’) [lascanopy]
7) generate subsets during the workflow [lasclip]
8) generate building footprints [lasboundary]

References:
Heilig, G. K. (2012). World urbanization prospects: the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York.
Gal, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206.
Suder, A., & Szymanowski, M. (2014). Determination of ventilation channels in urban area: A case study of Wroclaw (Poland). Pure and Applied Geophysics, 171(6), 965-975.

LASmoons: Gudrun Norstedt

Gudrun Norstedt (recipient of three LASmoons)
Forest History, Department of Forest Ecology and Management
Swedish University of Agricultural Sciences, Umeå, Sweden

Background:
Until the end of the 17th century, the vast boreal forests of the interior of northern Sweden were exclusively populated by the indigenous Sami. When settlers of Swedish and Finnish ethnicity started to move into the area, colonization was fast. Although there is still a prospering reindeer herding Sami culture in northern Sweden, the old Sami culture that dominated the boreal forest for centuries or even millenia is to a large extent forgotten.
Since each forest Sami family formerly had a number of seasonal settlements, the density of settlements must have been high. However, only very few remains are known today. In the field, old Sami settlements can be recognized through the presence of for example stone hearths, storage caches, pits for roasting pine bark, foundations of certain types of huts, reindeer pens, and fences. Researchers of the Forest History section of the Department of Forest Ecology and Management have long been surveying such remains on foot. This, however, is extremely time consuming and can only be done in limited areas. Also, the use of aerial photographs is usually difficult due to dense vegetation. Data from airborne laser scanning should be the best way to find remains of the old forest Sami culture. Previous research has shown the possibilities of using airborne laser scanning data for detecting cultural remains in the boreal forest (Jansson et al., 2009; Koivisto & Laulamaa, 2012; Risbøl et al., 2013), but no studies have aimed at detecting remains of the forest Sami culture. I want to test the possibilities of ALS in this respect.

DTM from the Krycklan catchment, showing a row of hunting pits and (larger) a tar pit.

Goal:
The goal of my study is to test the potential of using LiDAR data for detecting cultural and archaeological remains on the ground in a forest area where Sami have been known to dwell during historical times. Since the whole of Sweden is currently being scanned by the National Land Survey, this data will be included. However, the average point density of the national data is only 0,5–1 pulses/m^2. Therefore, the study will be done in an established research area, the Krycklan catchment, where a denser scanning was performed in 2015. The Krycklan data set lacks ground point classification, so I will have to perform such a classification before I can proceed to the creation of a DTM. Having tested various kind of software, I have found that LAStools seems to be the most efficient way to do the job. This, in turn, has made me aware of the importance of choosing the right methods and parameters for doing a classification that is suitable for archaeological purposes.

Data:
The data was acquired with a multi-spectral airborne LiDAR sensor, the Optech Titan, and a Micro IRS IMU, operated on an aircraft flying at a height of about 1000 m and positioning was post-processed with the TerraPos software for higher accuracy.
The average pulse density is 20 pulse/m^2.
+ About 7 000 hectares were covered by the scanning. The data is stored in 489 tiles.

LAStools processing:
1) run a series of classifications of a few selected tiles with both lasground and lasground_new with various parameters [lasground and lasground_new]
2) test the outcomes by comparing it to known terrain to find out the optimal parameters for classifying this particular LiDAR point cloud for archaeological purposes.
3) extract the bare-earth of all tiles (using buffers!!!) with the best parameters [lasground or lasground_new]
4) create bare-earth terrain rasters (DTMs) and analyze the area [lasdem]
5) reclassify the airborne LiDAR data collected by the National Land Survey using various parameters to see whether it can become more suitable for revealing Sami cultural remains in a boreal forest landscape  [lasground or lasground_new]

References:
Jansson, J., Alexander, B. & Söderman, U. 2009. Laserskanning från flyg och fornlämningar i skog. Länsstyrelsen Dalarna (PDF).
Koivisto, S. & Laulamaa, V. 2012. Pistepilvessä – Metsien arkeologiset kohteet LiDAR-ilmalaserkeilausaineistoissa. Arkeologipäivät 2012 (PDF).
Risbøl, O., Bollandsås, O.M., Nesbakken, A., Ørka, H.O., Næsset, E., Gobakken, T. 2013. Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. Journal of Archaeological Science 40:4688–4700.

NRW Open LiDAR: Merging Points into Proper LAS Files

In the first part of this series we downloaded, compressed, and viewed some of the newly released open LiDAR data for the state of North Rhine-Westphalia. In the second part we look at how to merge the multiple point clouds provided back into single LAS or LAZ files that are as proper as possible. Follow along with a recent version of LAStools and a pair of DGM and DOM files for your area of interest. For downloading the LiDAR we suggest using the wget command line tool with option ‘-c’ that after interruption in transmission will restart where it left off.

In the first part of this series we downloaded the pair of DGM and DOM files for the City of Bonn. The DGM file and the DOM file are zipped archives that contain the points in 1km by 1km tiles stored as x, y, z coordinates with centimeter resolution. We had already converted these textual *.xyz files into binary *.laz files. We did this with the open source LASzip compressor that is distributed with LAStools as described in that blog post. We continue now with the assumption that you have converted all of the *.xyz files to *.laz files as described here.

Mapping from tile names of DGM and DOM archives to classification and return type of points.

The mapping from tile names in DGM and DOM archives to the classification and return type of points: lp = last return. fp = first return, ab,aw,ag = synthetic points

There are multiple tiles for each square kilometer as the LiDAR has been split into different files based on classification and return type. Furthermore there are also synthetic points that were created by the land survey department to replace LiDAR under bridges and along buildings for generating higher quality rasters. We want to combine all points of a square kilometer into a single LAZ tile as it is usually expected. Simply merging the multiple files per tile is not an option as this would result in loosing point classifications and return type information as well as in duplicating all single returns that are stored in more than one file. The folks at OpenNRW offer this helpful graphic to know what the acronyms above mean:

Illustration of how acronyms used in tile names correspond to point classification and type.

Illustration of how acronyms used in tile names correspond to point classification and type.

In the following we’ll be looking at the set of files corresponding to the UTM tile 32366 / 5622. We wanted an interesting area with large buildings, a bridge, and water. We were looking for a suitable area using the KML overlays generated in part one. The tile along the Rhine river selected in the picture below covers the old city hall, the opera house, and the “Kennedy Bridge” has a complete set of DGM and DOM files:

      3,501 dgm1l-ab_32366_5622_1_nw.laz
     16,061 dgm1l-ag_32366_5622_1_nw.laz
      3,269 dgm1l-aw_32366_5622_1_nw.laz
    497,008 dgm1l-brk_32366_5622_1_nw.laz
  7,667,715 dgm1l-lpb_32366_5622_1_nw.laz
 12,096,856 dgm1l-lpnb_32366_5622_1_nw.laz
     15,856 dgm1l-lpub_32366_5622_1_nw.laz

      3,269 dom1l-aw_32366_5622_1_nw.laz
 21,381,106 dom1l-fp_32366_5622_1_nw.laz
We find the name of the tiles that cover the "Kennedy Bridge" using the KML overlays generated in part one.

We find the name of the tile that covers the “Kennedy Bridge” using the KML overlays generated in part one.

We now assign classification codes and flags to the returns from the different files using las2las, merge them together with lasmerge, and recover single, first, and last return information with lasduplicate. We set classifications to bridge deck (17), ground (2), to unclassified (1), and to noise (7) for all returns in the files with the acronym ‘brk’ (= bridge points), the acronym ‘lpb’ (= last return ground), the acronym ‘lpnb’ (= last return non-ground), and the acronym ‘lpub’ (= last return under ground). with las2las and store the resulting files to a temporary folder.

las2las -i dgm1l-brk_32366_5622_1_nw.laz ^
        -set_classification 17 ^
        -odir temp -olaz

las2las -i dgm1l-lpb_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -odir temp -olaz

las2las -i dgm1l-lpnb_32366_5622_1_nw.laz ^
        -set_classification 1 ^
        -odir temp -olaz

las2las -i dgm1l-lpub_32366_5622_1_nw.laz ^
        -set_classification 7 ^
        -odir temp -olaz

Next we use the synthetic flag of the LAS format specification to flag any additional points that were added (no measured) by the survey department to generate better raster products. We set classifications to ground (2) and the synthetic flag for all points of the files with the acronym ‘ab’ (= additional ground) and the acronym ‘ag’ (= additional building footprint). We set classifications to water (9) and the synthetic flag for all points of the files with the acronym ‘aw’ (= additional water bodies). Files with acronym ‘aw’ appear both in the DGM and DOM archive. Obviously we need to keep only one copy.

las2las -i dgm1l-ab_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

las2las -i dgm1l-ag_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

las2las -i dgm1l-aw_32366_5622_1_nw.laz ^
        -set_classification 9 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

Using lasmerge we merge all returns from files with acronyms ‘brk’ (= bridge points), ‘lpb’ (= last return ground),  ‘lpnb’ (= last return non-ground), and ‘lpub’ (= last return under ground) into a single file that will then contain all of the (classified) last returns for this tile.

lasmerge -i temp\dgm1l-brk_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpb_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpnb_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpub_32366_5622_1_nw.laz ^
         -o temp\dgm1l-lp_32366_5622_1_nw.laz

Next we run lasduplicate three times to recover which points are single returns and which points are the first and the last return of a pair of points generated by the same laser shot. First we run lasduplicate with option ‘-unique_xyz’ to remove any xyz duplicates from the last return file. We also mark all surviving returns as the second of two returns. Similarly, we remove any xyz duplicates from the first return file and mark all survivors as the first of two returns. Finally we run lasduplicate with option ‘-single_returns’ with the unique last and the unique first return files as ‘-merged’ input. If a return with the exact same xyz coordinates appears in both files only the first copy is kept and marked as a single return. In order to keep the flags and classifications from the last return file, the order in which the last and first return files are listed in the command line is important.

lasduplicate -i temp\dgm1l-lp_32366_5622_1_nw.laz ^
             -set_return_number 2 -set_number_of_returns 2 ^
             -unique_xyz ^
             -o temp\last_32366_5622_1_nw.laz

lasduplicate -i dom1l-fp_32366_5622_1_nw.laz ^
             -set_return_number 1 -set_number_of_returns 2 ^
             -unique_xyz ^
             -o temp\first_32366_5622_1_nw.laz

lasduplicate -i temp\last_32366_5622_1_nw.laz ^
             -i temp\first_32366_5622_1_nw.laz ^
             -merged ^
             -single_returns ^
             -o temp\all_32366_5622_1_nw.laz

We then add the synthetic points with another call to lasmerge to obtain a LAZ file containing all points of the tile correctly classified, flagged, and return-numbered.

lasmerge -i temp\dgm1l-ab_32366_5622_1_nw.laz ^
         -i temp\dgm1l-ag_32366_5622_1_nw.laz ^
         -i temp\dgm1l-aw_32366_5622_1_nw.laz ^
         -i temp\all_32366_5622_1_nw.laz ^
         -o temp\merged_32366_5622_1_nw.laz

Optional: For more efficient use of this file in subsequent processing – and especially to accelerate area-of-interest queries with lasindex – it is often of great advantage to reorder the points in a spatially coherent manner. A simple call to lassort will rearrange the points along a space-filling curve such as a Hilbert curve or a Z-order curve.

lassort -i temp\merged_32366_5622_1_nw.laz ^
        -o bonn_32366_5622_1_nw.laz

Note that we also renamed the file because a good name can be useful if you find that file again in two years from now. Let’s have a look at the result with lasview.

lasview -i bonn_32366_5622_1_nw.laz

In lasview you can press <c> repeatedly to switch through all available coloring modes until you see the yellow (single) / red (first) / last (blue) coloring of the returns. The recovered return types are especially evident under vegetation, in the presence of wires, and along building edges. Press <x> to select an area of interest and press <x> again to inspect it more closely. Press <i> while hovering above a point to show its coordinates, classification, and return type.

We did each processing in separate steps to illustrate the overall workflow. The above sequence of LAStools command line calls can be shortened by combining multiple processing steps into one operation. This is left as an exercise for the advanced LAStools user … (-;

Acknowledgement: The LiDAR data of OpenNRW comes with a very permissible license. It is called “Datenlizenz Deutschland – Namensnennung – Version 2.0” or “dl-de/by-2-0” and allows data and derivative sharing as well as commercial use. It only requires us to name the source. We need to cite the “Land NRW (2017)” with the year of the download in brackets and specify the Universal Resource Identification (URI) for both the DOM and the DGM. Done. So easy. Thank you, OpenNRW … (-: