LASmoons: Rachel Opitz

Rachel Opitz (recipient of three LASmoons)
Center for Virtualization and Applied Spatial Technologies
Department of Anthropology, University of South Florida, USA

In Spring 2017 Rachel Opitz will be teaching a course on Remote Sensing for Human Ecology and Archaeology at the University of South Florida. The aim of the course is to provide students with the practical skills and knowledge needed to work with contemporary remote sensing data. The course focuses on airborne laser scanning and hyper-spectral data and their application in Human Ecology and Archaeology. Through the course students will be introduced to a number of software packages commonly used to process and interpret these data, with an emphasis on free and/or open source tools.

Classification parameters and the resolution at which the DTM is interpolated both have a significant impact on our ability to recognize anthropogenic features in the landscape. Here we see a small quarry. More aggressive filtering and a coarser DTM resolution (left) makes it difficult to recognize that this is a quarry. Less aggressive filtering and a higher resolution (right) leaves some vegetation behind, but makes the edges of the quarry and some in-situ blocks clearly visible.

The students will develop practical skills in applied remote sensing through hands-on exercises. Learning to assess, manage and process large data sets is essential. In particular, the students in the course will learn to:
+ Identify the set of techniques needed to solve a problem in applied remote sensing
+ Find public imagery and specify acquisitions
+ Assess data quality
+ Process airborne LiDAR data
+ Combine complementary remote sensing data sources
+ Create effective data visualizations
+ Analyze digital topographic and spectral data to answer questions in human ecology and archaeology

The course will include case studies that draw on a variety of publicly available data sets that will all be used in the exercises:
+ the PNOA data from Spain
+ data held by NOAA
+ data collected using NASA’s GLiHT platform

LAStools processing:
LAStools will be used throughout the course, as students learn to assess the quality of LiDAR data, classify raw LiDAR point clouds, create raster terrain and canopy models, and produce visualizations. The online tutorials and videos available via the company website and the over 50 hours of video on YouTube as well as the LAStools user forum will be used as resources during the course.

LASmoons: Alen Berta

Alen Berta (recipient of three LASmoons)
Department of Terrestrial Ecosystems and Landscape, Faculty of Forestry
University of Zagreb and Oikon Ltd Institute for Applied Ecology, CROATIA

After becoming the EU member state, Croatia is obliged to fulfill the obligation risen from the Kyoto protocol: National Inventory Report (NIR) of the Green House Gasses according to UNFCCC. One of the most important things during the creation of the NIR is to know how many forested areas there are and their wood stock and increment. This is needed to calculate the size of the existing carbon pool and its potential for sequestration. Since in Croatia, according to legislative, it is not mandatory to calculate the wood stock and yield of the degraded forest areas (shrubbery and thickets) during the creation of the usual forest management plans, this data is missing. So far, only a rough approximation of the wood stock and increment is used during the creation of NIR. However, these areas are expanding every year due to depopulation of the rural areas and the cessation of traditional farming.

very diverse stand structure of degraded forest areas (shrubbery and thickets)

This study will focus on two things: (1) Developing regression models for biomass volume estimation in continental shrubberies and thickets based on airborne LiDAR data. To correlate LiDAR data with biomass volume, over 70 field plots with a radius of 12 meters have been established in more than 550 ha of the hilly and lowland shrubberies in Central Croatia and all trees and shrubberies above 1 cm Diameter at Breast Height (DBH) were recorded with information about tree species, DBH and height. Precise locations of the field plots are measured with survey GNNS and biomass is calculated with parameters from literature. For regression modeling, various statistics from the point clouds matching the field plots will be used (i.e. height percentiles, standard deviation, skewness, kurtosis, …). 2) Testing the developed models for different laser pulse densities to find out if there is a significant deviation from results if the LiDAR point cloud is thinner. This will be helpful for planning of the later scanning for the change detection (increment or degradation).

641 square km of discrete returns LiDAR data around the City of Zagreb, the capitol of Croatia (but since it is highly populated area, only the outskirts of the area will be used)
+ raw geo-referenced LAS files with up to 3 returns and an average last return point density of 1 pts/m².

LAStools processing:
extract area of interest [lasclip or las2las]
2) create differently dense versions (for goal no. 2) [lasthin]
3) remove isolated noise points [lasnoise]
4) classify point clouds into ground and non-ground [lasground]
5) create a Digital Terrain Model (DTM) [las2dem]
6) compute height of points above the ground [lasheight]
7) classify point clouds into vegetation and other [lasclassify]
8) normalize height of the vegetation points [lasheight]
9) extract the areas of the field plots [lasclip]
10) compute various metrics for each plot [lascanopy]
11) convert LAZ to TXT for regression modeling in R [las2txt]

LASmoons: Stéphane Henriod

Stéphane Henriod (recipient of three LASmoons)
National Statistical Committee of the Kyrgyz Republic
Bishkek, Kyrgyzstan

This pilot study is part of the International Climate Initiative project called “Ecosystem based Adaptation to Climate change in the high mountainous regions of Central Asia” that is funded by the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMU) of Germany and implemented by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH in Kyrgyzstan, Tajikistan and Kazakhstan.


The ecosystems in high mountainous regions of Central Asia are characterized by a unique diversity of flora and fauna. In addition, they are the foundation of the livelihoods of the local population. Specific benefits include clean water, pasture, forest products, protection against floods and landslides, maintenance of soil fertility, and ecotourism. However, the consequences of climate change such as melting glaciers, changing river runoff regimes, and weather anomalies including sharp temperature fluctuations and non-typical precipitation result in negative impacts on these ecosystems. Coupled with unwise land use, these events damage fragile mountain ecosystems and reduce their regeneration ability undermining the local population’s livelihoods. Therefore, people living in rural areas and directly depending on natural resources must adapt to adverse impacts of climate change. This can be done through a set of measures, known in the world practice as ecosystem-based adaptation (EbA) approach. It promotes the sustainable use of natural resources to sustain and enhance the livelihood of the population depending on those resources.

lasmoons_Stephane_Henriod_2 Goal:
In two selected pilot regions of Kyrgyzstan and Tajikistan, planned measures will concentrate on climate-informed management of ecosystems in order to maintain their services for the rural population. EbA always starts with identifying the vulnerability of the local population. Besides analyzing the socio-economic situation of the local population, this includes (1) assessing the ecological conditions of the ecosystems in the watershed and the related ecosystem services people benefit from, (2) identifying potential disaster risks, and (3) analyzing glacier dynamics with its response to water runoff. As a baseline to achieve this and to get spatially explicit, remote sensing based techniques and mapping activities need to be utilized.

A first UAV (unmanned aerial vehicle) mission has taken place in the Darjomj watershed of the Bartang valley in July 2016. RGB-NIR images as well as a high-resolution Digital Surface Model have been produced that now need to be segmented and analysed in order to produce comprehensive information. The main processing that will take advantage of LAStools is the generation of a DTM from the DSM that will then be used for identifying risk areas (flood zones, landslides and avalanches, etc.). The results of this approach will ultimately be compared with lower-cost satellite images (RapidEye, Planet, Sentinel).

+ High-resolution RGB and NIR image (10 cm) from a SenseFly Ebee
+ High-resolution DSM (10 cm) from a SenseFly Ebee

LAStools processing:
classify DSM points obtained via dense-matching photogrammetry into a SenseFly Ebee imagery into ground and non-ground points via processing pipelines as described here and here [lastile, lassort, lasnoise, lasground]
2) create a DTM [las2dem, lasgrid, blast2dem]
3) produce 3D visualisations to facilitate the communication around adaptation to climate change [lasview]

LASmoons: Jane Meiforth

Jane Meiforth (recipient of three LASmoons)
Environmental Remote Sensing and Geoinformatics
University of Trier, GERMANY

The New Zealand Kauri trees (or Agathis australis) are under threat by the so called Kauri dieback disease. This disease is caused by a fungi like spore, which blocks the transport for nutrition and water in the trunk and finally kills the trees. Symptoms of the disease in the canopy like dropping of leaves and bare branches offer an opportunity for analysing the state of the disease by remote sensing. The study site covers three areas in the Waitakere Ranges, west of Auckland with Kauri trees in different growth and health classes.


The main objective of this study is to identify Kauri trees and canopy symptoms of the disease by remote sensing, in order to support the monitoring of the disease. In the first step LAStools will be used to extract the tree crowns and describe their characteristics based on height metrics, shapes and intensity values from airborne LiDAR data. In the second step, the spectral characteristics of the tree crowns will be analyzed based on very high resolution satellite data (WV02 and WV03). Finally the best describing spatial and spectral parameters will be combined in an object based classification, in order to identify the Kauri trees and different states of the disease..

 high resolution airborne LiDAR data (15-35p/sqm, ground classified) taken in January 2016
+ 15cm RGB aerial images taken on the same flight as the LIDAR data
+ ground truth field data from 2100 canopy trees in the study areas, recorded January – March 2016
+ helicopter images taken in January – April 2016 from selected Kauri trees by Auckland Council
+ vector layers with infrastructure data like roads and hiking trackslasmoons_CHM_Jane_Meiforth_0


LAStools processing:
create square tiles with edge length of 1000 m and a 25 m buffer to avoid edge artifacts [lastile]
2) generate DTMs and DSMs [las2dem]
3).produce height normalized tiles [lasheight]
4) generate a pit-free Canopy Height Model (CHM) using the method of Khosravipour et al. (2014) with the workflow described here [lasthin, las2dem, lasgrid]
5) extract crown polygons based on the pit-free CHM [inverse watershed method in GIS, las2iso]
6) normalize the points of each crown with constant ground elevation to avoid slope effects [lasclip, las2las with external source for the ground elevation]
7) derive height metrics for each crown on base of the normalized crown points [lascanopy]
8) derive intensity statistics for the crown points [lascanopy with ‘-int_avg’, ‘-int_std’ etc. on first returns]
9) derive metrics correlated with the dropping of leaves like canopy density, canopy cover and gap fraction for the crown points [lascanopy with ‘–cov’, ‘–dns’, ‘–gap’, ‘–fraction’]

Hu B, Li J, Jing L, Judah A. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data. International Journal of Applied Earth Observation and Geoinformation. 2014; 26: 145-55.
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T.J., Hussin, Y.A., 2014. Generating pit-free Canopy Height Models from Airborne LiDAR. PE&RS = Photogrammetric Engineering and Remote Sensing 80, 863-872.
Li J, Hu B, Noland TL. Classification of tree species based on structural features derived from high density LiDAR data. Agricultural and Forest Meteorology. 2013; 171-172: 104-14.
MPI New Zealand – website with information on the kauri dieback disease
Vauhkonen, J., Ene, L., Gupta, S., Heinzel, J., Holmgren, J., Pitkänen, J., Solberg, S., Wang, Y., Weinacker, H., Hauglin, K. M., Lien, V., Packalén, P., Gobakken, T., Koch, B., Næsset, E., Tokola, T. and Maltamo, M. (2012) Comparative testing of single-tree detection algorithms under different types of forest. Forestry, 85, 27-40.

LASmoons: Patricia Andrade

Patricia Andrade (recipient of three LASmoons)
Earth Sciences Division

The relief in the northwest coast of Baja California is subject to different processes. One process that has a major impact are landslides. The near-shore landslides have been a significant problem because this area coincides with the location of the Tijuana-Ensenada Scenic highway which is one of the main routes between Tijuana and Ensenada. On 28 December 2013 a rotational slip in the stretch of 93 km caused the closure of the Tijuana-Ensenada highway. Several measurements with emerging techniques such as photogrammetry by drones and terrestrial and airborne LiDAR surveys were taken since the landslide. From airborne LiDAR point clouds of different dates DTM are created and used to estimate differences (James, 2012). From terrestrial LiDAR point clouds the characteristics of planes and lines (i.e. striations) on the footwall are determined. An analysis of such geomorphological processes can facilitate a rapid response and help to reopen the highways faster.


TLS point cloud of the landslide in the stretch km93 +50 (January 2014).

The main goal of this project is to estimate the volume change on the landslide’s day and later years from digital terrain models (DTMs) of pre-event data (2006) and post-event (2013, 2014 and 2016). A second goal is to create a model of surface strain from TLS data and a point cloud (2013).

DTM of 2006 (pre-event) from the National Institute of Statistics and Geography (INEGI).
+ relief data of the day of landslide (2013) obtained by photogrammetry from 144 photos taken with a DJi S800 drone.
+ DTM from January 2014 aquired by satellite photogrammetry of images from GeoEye 1.
+ 11 TLS point clouds scanned and co-registered in February 2014  with a Faro Focus 3D x330.
+ NCALM aerial LiDAR captured In July 2014 of th landslide zone.
+ highway rehabilitation data taken in March 2016 from RGB / NIR photos of eBee drone flights.

LAStools processing:
create square tiles with buffers [lastile]
2) classify isolated points as noise [lasnoise]
3) classify points clouds into ground and non-ground [lasground]
4).generate DTMs from ground-classified points [las2dem]
5) change the resolution of DEMs [lasgrid]
6) create hillshades of the DTMs [blast2dem]

James, L. A., Hodgson, M. E., Ghoshal, S., Latiolais, M. M., 2012. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology 137, 181-198.

LASmoons: Jakob Iglhaut

Jakob Iglhaut (recipient of three LASmoons)
Program for Geospatial Information Management
Carinthia University of Applied Sciences, Villach, AUSTRIA

As part of the EU LIFE programme two river stretches in Carinthia, Austria have recently been subject to restoration measures. The LIFE-project aims at protecting valuable riverine flora and fauna while improving flood protection. By remodelling the river beds, the construction of groynes and still water bodies the river environment was directed to more natural morphology and state. The joint R&D project “Remotely Piloted Aircraft Multi Sensor System (RPAMSS)” aims at capturing multi-dimensional environmental data in order to monitor the development of these rivers stretches in a holistic way. Flights with an RTK capable fixed wing UAV are carried out at a particular section of the rivers Gail and Drau respectively. The project site at the Upper-Drau is located in the area of Obergottesfeld, Austria (560m ASL), with an area currently remotely monitored by the RPAmSS of approximately 3.5km². The second study area is located close to Feistritz at the river Gail (550m ASL) with an area of approx. 0.9km². Apart from being addressed by the LIFE project both study areas are also defined as NATURA 2000 nature protection sites. In both areas frequent UAV flights are carried out collecting high-resolution multi-spectral imagery. Structure from Motion photogrammetry enables the creation of high-density multi-spectral point clouds.


The aim of the project is to assess the morphology and related temporal changes of the described riverine environment based on SfM point clouds. A full processing chain will be developed to take full advantage of the high-density data. Particular interest lies in the extraction of ground points underneath vegetation in leaf-on/leaf-off. Ground points will be gridded to generate DTMs. The qualitative performance of the data will be held against an ALS acquired DTM. Furthermore forest metrics will be extracted for the riparian zone in order to quantify their current state and changes.

High-density multi-spectral (R,G,B,NIR) SfM derived point clouds (UAS imagery)
+ Variable point densities, GSD ~3cm.

LAStools processing:
fix SfM owing incoherence [lassort]
2) create 100m tiles (10m buffer) for parallel processing [lastile]
3) noise removal introduced by the SfM algorithm [lasnoise]
4).extract ground points [lasground_new]
5) generate normalized above heights [lasheight]
6) classify based on height-above-ground (low veg, high veg) [lasheight]
7) create DSM and DTM [blast2dem]
generate a Canopy Height Model (CHM) using the pit-free method of Khosravipour et al. (2014) with the workflow described here [lasthin, las2dem, lasgrid]
sub-sample the point clouds for other (spectral) analyses [lassplit, lasthin, lasmerge]

Westoby, M. J., et al. “Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications.” Geomorphology 179 (2012): 300-314.
Fonstad, Mark A., et al. “Topographic structure from motion: a new development in photogrammetric measurement.” Earth Surface Processes and Landforms 38.4 (2013): 421-430.
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T.J., Hussin, Y.A., 2014. Generating pit-free Canopy Height Models from Airborne LiDAR. PE&RS = Photogrammetric Engineering and Remote Sensing 80, 863-872.
Javernick, L., J. Brasington, and B. Caruso. “Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry.” Geomorphology 213 (2014): 166-182.

LASmoons: Asanga Ramanayake

Asanga Ramanayake (recipient of three LASmoons)
BGSU Remote Sensing Lab, School of Earth, Environment and Society
Bowling Green State University, Ohio, USA

Lake Erie is the Southern most of the Great Lakes and it is shared by 4 states and 2 countries. It is the shallowest, warmest, and most biologically productive of all the Great Lakes. At wetland habitats along the Western Lake Erie coast, more than 300 species of plants have been identified. To study land use and to classify vegetation cover it is important to consider the vertical distribution of the vegetation. LiDAR is an active data collection system for generating 3D spatial information of objects. High-resolution Digital Terrain Models (DTMs) and Digital Surface Models (DSMs) can be generated from the available LiDAR points that allow accurate estimates of canopy height.


The main goal of this project is to derive Digital Terrain Models (DTMs) and Digital Surface Models (DSMs) for the coastal areas of Lake Erie using LIDAR data to estimate the height of the canopy. The derived products will be validated with in-situ measurements from other researchers and compared with ASTER Global Digital Elevation Model data.

coastal area LiDAR data coverage for Lake Erie

coastal area LiDAR data coverage for Lake Erie

The Ohio Geographically Referenced Information Program (OGRIP) has free downloadable LIDAR data in LAS format that was acquired by Ohio Statewide Imagery Program (OSIP) in 2006-2008.
+ In 2011-2012 NOAA’s mission was capturing coastal area LiDAR data. This data is served to the public and available in LAZ format.

LAStools processing:
create square tiles to avoid edge artifacts [lastile]
2) classify point clouds into ground and non-ground [lasground]
3) generate DTMs and DSMs for the coastal areas of Lake Erie [las2dem]
4).produce height normalized tiles [lasheight]
5) generate a Canopy Height Model (CHM) using the pit-free method of Khosravipour et al. (2014) [lasthin, las2dem, lasgrid]

Herdendorf, Charles E. The ecology of the coastal marshes of western Lake Erie: a community profile. OHIO STATE UNIV COLUMBUS, 1987.
Deems, Jeffrey S., Thomas H. Painter, and David C. Finnegan. “Lidar Measurement of Snow Depth: A Review.” Journal of Glaciology 59.215 (2013): 467–479. IngentaConnect. Web.
Jensen, John R. Remote Sensing of the Environment: An Earth Resource Perspective. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2007. Print. Prentice Hall Series in Geographic Information Science.
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T.J., Hussin, Y.A., 2014. Generating pit-free Canopy Height Models from Airborne LiDAR. PE&RS = Photogrammetric Engineering and Remote Sensing 80, 863-872.