New Step-by-Step Tutorial for Velodyne Drone LiDAR from Snoopy by LidarUSA

The folks from Harris Aerial gave us LiDAR data from a test-flight of one of their drones, the Carrier H4 Hybrid HE (with a 5kg maximum payload and a retail price of US$ 28,000), carrying a Snoopy A series LiDAR system from LidarUSA in the countryside near Huntsville, Alabama. The laser scanner used by the Snoopy A series is a Velodyne HDL 32E that has 32 different laser/detector pairs that fire in succession to scan up to 700,000 points per second within a range of 1 to 70 meters. You can download the raw LiDAR file from the 80 second test flight here. As always, the first thing we do is to visualize the file with lasview and to generate a textual report of its contents with lasinfo.

lasview -i Velodyne001.laz -set_min_max 680 750

It becomes obvious that the drone must have scanned parts of itself (probably the landing gear) during the flight and we exploit this fact in the later processing. The information which of the 32 lasers was collecting which point is stored into the ‘point source ID’ field which is usually used for the flightline information. This results in a psychedelic look in lasview as those 32 different numbers get mapped to the 8 different colors that lasview uses for distinguishing flightlines.

The lasinfo report we generate computes the average point density with ‘-cd’ and includes histograms for a number of point attributes, namely for ‘user data’, ‘intensity’, ‘point source ID’, ‘GPS time’, and ‘scan angle rank’.

lasinfo -i Velodyne001.laz ^
        -cd ^
        -histo user_data 1 ^
        -histo point_source 1 ^
        -histo intensity 16 ^
        -histo gps_time 1 ^
        -histo scan_angle_rank 5 ^
        -odir quality -odix _info -otxt

You can download the resulting report here and it will tell you that the information which of the 32 lasers was collecting which point was stored both into the ‘user data’ field and into the ‘point source ID’ field. The warnings you see below have to do with the fact that the double-precision bounding box stored in the LAS header was populated with numbers that have many more decimal digits than the coordinates in the file, which only have millimeter (or millifeet) resolution as all three scale factors are 0.001 (meaning three decimal digits).

WARNING: stored resolution of min_x not compatible with x_offset and x_scale_factor: 2171988.6475160527
WARNING: stored resolution of min_y not compatible with y_offset and y_scale_factor: 1622812.606925504
WARNING: stored resolution of min_z not compatible with z_offset and z_scale_factor: 666.63504345017589
WARNING: stored resolution of max_x not compatible with x_offset and x_scale_factor: 2172938.973065129
WARNING: stored resolution of max_y not compatible with y_offset and y_scale_factor: 1623607.5209975131
WARNING: stored resolution of max_z not compatible with z_offset and z_scale_factor: 1053.092674726669

Both the “return number” and the “number of returns” attribute of every points in the file is 2. This makes it appear as if the file would only contain the last returns of those laser shots that produced two returns. However, as the Velodyne HDL 32E only produces one return per shot we can safely conclude that those numbers should all be 1 instead of 2 and that this is just a small bug in the export software. We can easily fix this with las2las.

reporting minimum and maximum for all LAS point record entries ...
[...]
 return_number 2 2
 number_of_returns 2 2
[...]

The lasinfo report lacks information about the coordinate reference system as there is no VLR that stores projection information. Harris Aerial could not help us other than telling us that the scan was near Huntsville, Alamaba. Measuring certain distances in the scene like the height of the house or the tree suggests that both horizontal and vertical units are in feet, or rather in US survey feet. After some experimenting we find that using EPSG 26930 for NAD83 Alabama West but forcing the default horizontal units from meters to US survey feet gives a result that aligns well with high-resolution Google Earth imagery as you can see below:

lasgrid -i flightline1.laz ^
        -i flightline2.laz ^
        -merged ^
        -epsg 26930 -survey_feet ^
        -step 1 -highest ^
        -false -set_min_max 680 750 ^
        -o testing26930usft.png

Using EPSG code 26930 but with US survey feet instead of meters results in nice alignment with GE imagery.

We use the fact that the drone has scanned itself to extract an (approximate) trajectory by isolating those LiDAR returns that have hit the drone. Via a visual check with lasview (by hovering with the cursor over the lowest drone hits and pressing hotkey ‘i’) we determine that the lowest drone hits are all above 719 feet. We use two calls to las2las to split the point cloud vertically. In the same call we also change the resolution from three to two decimal digits, fix the return number issue, and add the missing geo-referencing information:

las2las -i Velodyne001.laz ^
        -rescale 0.01 0.01 0.01 ^
        -epsg 26930 -survey_feet -elevation_survey_feet ^
        -set_return_number 1 ^
        -set_number_of_returns 1 ^
        -keep_z_above 719 ^
        -odix _above719 -olaz

las2las -i Velodyne001.laz ^
        -rescale 0.01 0.01 0.01 ^
        -epsg 26930 -survey_feet -elevation_survey_feet ^
        -set_return_number 1 ^
        -set_number_of_returns 1 ^
        -keep_z_below 719 ^
        -odix _below719 -olaz

We then use the manual editing capabilities of lasview to change the classifications of the LiDAR points that correspond to drone hits from 1 to 12, which is illustrated by the series of screen shots below.

lasview -i Velodyne001_above719.laz

The workflow illustrated above results in a tiny LAY file that is part of the LASlayers functionality of LAStools. It only encodes the few changes in classifications that we’ve made to the LAZ file without re-writing those parts that have not changed. Those interested may use laslayers to inspect the structure of the LAY file:

laslayers -i Velodyne001_above719.laz

We can apply the LAY file on-the-fly with the ‘-ilay’ option, for example, when running lasview:

lasview -i Velodyne001_above719.laz -ilay

To separate the drone-hit trajectory from the remaining points we run lassplit with the ‘-ilay’ option and request to split by classification with this command line:

lassplit -i Velodyne001_above719.laz -ilay ^
         -by_classification -digits 3 ^
         -olaz

This gives us two new files with the three-digit appendices ‘_001’ and ‘_012’. The latter one contains those points we marked as being part of the trajectory. We now want to use lasview to – visually – find a good moment in time where to split the trajectory into multiple flightlines. The lasinfo report tells us that the GPS time stamps are in the range from 418,519 to 418,602. In order to use the same trick as we did in our recent article on processing LiDAR data from the Hovermap Drone, where we mapped the GPS time to the intensity for querying it via lasview, we first need to subtract a large number from the GPS time stamps to bring them into a suitable range that fits the intensity field as done here.

lasview -i Velodyne001_above719_012.laz ^
        -translate_gps_time -418000 ^
        -bin_gps_time_into_intensity 1
        -steps 5000

The ‘-steps 5000’ argument makes for a slower playback (press ‘p’ to repeat) to better follow the trajectory.

Hovering with the mouse over a point that – visually – seems to be one of the turning points of the drone and pressing ‘i’ on the keyboard shows an intensity value of 548 which corresponds to the GPS time stamp 418548, which we then use to split the LiDAR point cloud (without the trajectory) into two flightlines:

las2las -i Velodyne001_below719.laz ^
        -i Velodyne001_above719_001.laz ^
        -merged ^
        -keep_gps_time_below 418548 ^
        -o flightline1.laz

las2las -i Velodyne001_below719.laz ^
        -i Velodyne001_above719_001.laz ^
        -merged ^
        -keep_gps_time_above 418548 ^
        -o flightline2.laz

Next we use lasoverlap to check how well the LiDAR points from the flight out and the flight back align vertically. This tool computes the difference of the lowest points for each square foot covered by both flightlines. Differences of less than a quarter of a foot are mapped to white, differences of more than half a foot are mapped to saturated red or blue depending on whether the difference is positive or negative:

lasoverlap -i flightline1.laz ^
           -i flightline2.laz ^
           -faf ^
           -min_diff 0.25 -max_diff 0.50 -step 1 ^
           -odir quality -o overlap_025_050.png

We then use a new feature of the LAStools GUI (as of version 180429) to closer inspect larger red or blue areas. We want to use lasmerge and clip out any region that looks suspect for closer examination with lasview. We start the tool in the GUI mode with the ‘-gui’ command and the two flightlines pre-loaded. Using the new PNG overlay roll-out on the left we add the ‘overlap_025_050_diff.png’ image from the quality folder created in the last step and clip out three areas.

lasmerge -i flightline1.laz -i flightline2.laz -gui

You can also clip out these three areas using the command lines below:

lasmerge -i flightline1.laz -i flightline2.laz ^
         -faf ^
         -inside 2172500 1623160 2172600 1623165 ^
         -o clip2500_3160_100x005.laz

lasmerge -i flightline1.laz -i flightline2.laz ^
         -faf ^
         -inside 2172450 1623450 2172550 1623455 ^
         -o clip2450_3450_100x005.laz

lasmerge -i flightline1.laz -i flightline2.laz ^
         -faf ^
         -inside 2172430 1623290 2172530 1623310 ^
         -o clip2430_3290_100x020.laz

A closer inspection of the three cut out slices explains the red and blue areas in the difference image created by lasoverlap. We find a small systematic error in two of the slices. In slice ‘clip2500_3160_100x005.laz‘ the green points from flightline 1 are on average slightly higher than the red points from flightline 2. Vice-versa in slice ‘clip2450_3450_100x005.laz‘ the green points from flightline 1 are on average slightly lower than the red points from flightline 2. However, the error is less than half a foot and only happens near the edges of the flightlines. Given that our surfaces are expected to be “fluffy” anyways (as is typical for Velodyne LiDAR systems), we accept these differences and continue processing.

The strong red and blue colors in the center of the difference image created by lasoverlap is easily explained by looking at slice ‘clip2430_3290_100x020.laz‘. The scanner was “looking” under a gazebo-like open roof structure from two different directions and therefore always seeing parts of the floor in one flightline that were obscured by the roof in the other.

While working with this data we’ve also implemented a new feature for lastrack that computes the 3D distance between LiDAR points and the trajectory and allows storing the result as an additional per point attribute with extra bytes. Those can then be visualized with lasgrid. Here an example:

lastrack -i flightline1.laz ^
         -i flightline2.laz ^
         -track Velodyne001_above719_012.laz ^
         -store_xyz_range_as_extra_bytes ^
         -odix _xyz_range -olaz ^
         =cores 2

lasgrid -i flightline*_xyz_range.laz -merged ^
        -drop_attribute_below 0 1 ^
        -attribute0 -lowest ^
        -false -set_min_max 20 200 ^
        -o quality/closest_xyz_range_020ft_200ft.png

lasgrid -i flightline*_xyz_range.laz -merged ^
        -drop_attribute_below 0 1 ^
        -attribute0 -highest ^
        -false -set_min_max 30 300 ^
        -o quality/farthest_xyz_range_030ft_300ft.png

Below the complete processing pipeline for creating a median ground model from the “fluffy” Velodyne LiDAR data that results in the hillshaded DTM shown here. The workflow is similar to those we have developed in earlier blog posts for Velodyne Puck based systems like the Hovermap and the Yellowscan.

Hillshaded DTM with a resolution of 1 foot generated via a median ground computation by the LAStools processing pipeline detailed below.

lastile -i flightline1.laz ^
        -i flightline2.laz ^
        -faf ^
        -tile_size 250 -buffer 25 -flag_as_withheld ^
        -odir tiles_raw -o somer.laz

lasnoise -i tiles_raw\*.laz ^
         -step_xy 2 -step 1 -isolated 9 ^
         -odir tiles_denoised -olaz ^
          -cores 4

lasthin -i tiles_denoised\*.laz ^
        -ignore_class 7 ^
        -step 1 -percentile 0.05 10 -classify_as 8 ^
        -odir tiles_thinned_1_foot -olaz ^
        -cores 4

lasthin -i tiles_thinned_1_foot\*.laz ^
        -ignore_class 7 ^
        -step 2 -percentile 0.05 10 -classify_as 8 ^
        -odir tiles_thinned_2_foot -olaz ^
        -cores 4

lasthin -i tiles_thinned_2_foot\*.laz ^
        -ignore_class 7 ^
        -step 4 -percentile 0.05 10 -classify_as 8 ^
        -odir tiles_thinned_4_foot -olaz ^
        -cores 4

lasthin -i tiles_thinned_4_foot\*.laz ^
        -ignore_class 7 ^
        -step 8 -percentile 0.05 10 -classify_as 8 ^
        -odir tiles_thinned_8_foot -olaz ^
        -cores 4

lasground -i tiles_thinned_8_foot\*.laz ^
          -ignore_class 1 7 ^
          -town -extra_fine ^
          -odir tiles_ground_lowest -olaz ^
          -cores 4

lasheight -i tiles_ground_lowest\*.laz ^
          -classify_between -0.05 0.5 6 ^
          -odir tiles_ground_thick -olaz ^
          -cores 4

lasthin -i tiles_ground_thick\*.laz ^
        -ignore_class 1 7 ^
        -step 1 -percentile 0.5 -classify_as 2 ^
        -odir tiles_ground_median -olaz ^
        -cores 4

las2dem -i tiles_ground_median\*.laz ^
        -keep_class 2 ^
        -step 1 -use_tile_bb ^
        -odir tiles_dtm -obil ^
        -cores 4

blast2dem -i tiles_dtm\*.bil -merged ^
          -step 1 -hillshade ^
          -o dtm_hillshaded.png

We thank Harris Aerial for sharing this LiDAR data set with us flown by their Carrier H4 Hybrid HE drone carrying a Snoopy A series LiDAR system from LidarUSA.

Three Videos from Full Day Workshop on LiDAR at IIST Trivandrum in India

Three videos from a full day workshop on LiDAR processing at the Department of Earth and Space Sciences of the Indian Institute of Space Science and Technology (IIST) in Thiruvananthapuram, Kerala, India held in October 2017 that was organized by Dr. A. M. Ramiya who we thank very much for the invitation and for being such a kind host. After our usual introduction to LiDAR and LAStools we use three raw flightlines from Ayutthaya, Thailand as example data to perform a complete LiDAR workflow including

  1. LiDAR quality checking such as pulse density, coverage, and flightline alignment
  2. LiDAR preparation (compressing, tiling, denoising, classifying)
  3. LiDAR derivative creation (DTM and DSM rasters, contours, building and vegetation footprints)

You can download the three flightlines used in the tutorial here (line2, line3, line4) to follow along.

morning video

after lunch video

after tea video

Plots to Stands: Producing LiDAR Vegetation Metrics for Imputation Calculations

Some professionals in remote sensing find LAStools a useful tool to extract statistical metrics from LiDAR that are used to make estimations about a larger area of land from a small set of sample plots. Common applications are prediction of the timber volume or the above-ground biomass for entire forests based on a number of representative plots where exact measurements were obtained with field work. The same technique can also be used to make estimations about animal habitat or coconut yield or to classify the type of vegetation that covers the land. In this tutorial we describe the typical workflow for computing common metrics for smaller plots and larger areas using LAStools.

Download these six LiDAR tiles (1, 2, 3, 4, 5, 6) from a Eucalyptus plantation in Brazil to follow along the step by step instructions of this tutorial. This data is courtesy of Suzano Pulp and Paper. Please also download the two shapefiles that delineate the plots where field measurements were taken and the stands for which predictions are to be made. You should download version 170327 (or higher) of LAStools due to some recent bug fixes.

Quality Checking

Before processing newly received LiDAR data we always perform a quality check first. This ranges from visual inspection with lasview, to printing textual content reports and attribute histograms with lasinfo, to flight-line alignment checks with lasoverlap, pulse density and pulse spacing checks with lasgrid and las2dem, and completeness-of-returns check with lassort followed by lasreturn.

lasinfo -i tiles_raw\CODL0003-C0006.laz ^
        -odir quality -odix _info -otxt

The lasinfo report tells us that there is no projection information. However, we remember that this Brazilian data was in the common SIRGAS 2000 projection and try for a few likely UTM zones whether the hillshaded DSM produced by las2dem falls onto the right spot in Google Earth.

las2dem -i tiles_raw\CODL0003-C0006.laz ^
        -keep_first -thin_with_grid 1 ^
        -hillshade -epsg 31983 ^
        -o epsg_check.png

Hillshaded DSM and Google Earth imagery align for EPSG code 31983

The lasinfo report also tells us that the xyz coordinates are stored with millimeter resolution which is a bit of an overkill. For higher and faster LASzip compression we will later lower this to a more appropriate centimeter resolution. It further tells us that the returns are stored using point type 0 and that is a bit unfortunate. This (older) point type does not have a GPS time stamp so that some quality checks (e.g. “completeness of returns” with lasreturn) and operations (e.g. “resorting of returns into acquisition order” with lassort) will not be possible. Fortunately the min-max range of the ‘point source ID’ suggests that this point attribute is correctly populated with flightline numbers so that we can do a check for overlap and alignment of the different flightlines that contribute to the LiDAR in each tile.

lasoverlap -i tiles_raw\*.laz ^
           -min_diff 0.2 -max_diff 0.4 ^
           -epsg 31983 ^
           -odir quality -opng ^
           -cores 3

We run lasoverlap to visualize the amount of overlap between flightlines and the vertical differences between them. The produced images (see below) color code the number of flightlines and the maximum vertical difference between any two flightlines as seen below. Most of the area is cyan (2 flightlines) except in the bottom left where the pilot was sloppy and left some gaps in the yellow seams (3 flightlines) so that some spots are only blue (1 flightline). We also see that two tiles in the upper left are partly covered by a diagonal flightline. We will drop that flightline later to create a more uniform density.across the tiles. The mostly blue areas in the difference are mostly aligned with features in the landscape and less with the flightline pattern. Closer inspection shows that these vertical difference occur mainly in the dense old growth forests with species of different heights that are much harder to penetrate by the laser than the uniform and short-lived Eucalyptus plantation that is more of a “dead forest” with little undergrowth or animal habitat.

Interesting observation: The vertical difference of the lowest return from different flightlines computed per 2 meter by 2 meter grid cell could maybe be used a new forestry metric to help distinguish mono cultures from natural forests.

lasgrid -i tiles_raw\*.laz ^
        -keep_last ^
        -step 2 -point_density ^
        -false -set_min_max 10 20 ^
        -epsg 31983 ^
        -odir quality -odix _d_2m_10_20 -opng ^
        -cores 3

lasgrid -i tiles_raw\*.laz ^
        -keep_last ^
        -step 5 -point_density ^
        -false -set_min_max 10 20 ^
        -epsg 31983 ^
        -odir quality -odix _d_5m_10_20 -opng ^
        -cores 3

We run lasgrid to visualize the pulse density per 2 by 2 meter cell and per 5 by 5 meter cell. The produced images (see below) color code the number of last return per square meter. The impact of the tall Eucalyptus trees on the density per cell computation is evident for the smaller 2 meter cell size in form of a noisy blue/red diagonal in the top right as well as a noisy blue/red area in the bottom left. Both of those turn to a more consistent yellow for the density per cell computation with larger 5 meter cells. Immediately evident is the higher density (red) for those parts or the two tiles in the upper left that are covered by the additional diagonal flightline. The blueish area left to the center of the image suggests a consistently lower pulse density whose cause remains to be investigated: Lower reflectivity? Missing last returns? Cloud cover?

The lasinfo report suggests that the tiles are already classified. We could either use the ground classification provided by the vendor or re-classify the data ourselves (using lastilelasnoise, and lasground). We check the quality of the ground classification by visually inspecting a hillshaded DTM created with las2dem from the ground returns. We buffer the tiles on-the-fly for a seamless hillshade without artifacts along tile boundaries by adding ‘-buffered 25’ and ‘-use_orig_bb’ to the command-line. To speed up reading the 25 meter buffers from neighboring tiles we first create a spatial indexing with lasindex.

lasindex -i tiles_raw\*.laz ^
         -cores 3

las2dem -i tiles_raw\*.laz ^
        -buffered 25 ^
        -keep_class 2 -thin_with_grid 0.5 ^
        -use_orig_bb ^
        -hillshade -epsg 31983 ^
        -odir quality -odix _dtm -opng ^
        -cores 3

hillshaded DTM tiles generated with las2dem and on-the-fly buffering

The resulting hillshaded DTM shows a few minor issues in the ground classification but also a big bump (above the mouse cursor). Closer inspection of this area (you can cut it from the larger tile using the command-line below) shows that there is a group of miss-classified points about 1200 meters below the terrain. Hence, we will start from scratch to prepare the data for the extraction of forestry metrics.

las2las -i tiles_raw\CODL0004-C0006.laz ^
        -inside_tile 207900 7358350 100 ^
        -o bump.laz

lasview -i bump.laz

bump in hillshaded DTM caused by miss-classified low noise

Data Preparation

Using lastile we first tile the data into smaller 500 meter by 500 meter tiles with 25 meter buffer while flagging all points in the buffer as ‘withheld’. In the same step we lower the resolution to centimeter and put nicer a coordinate offset in the LAS header. We also remove the existing classification and classify all points that are much lower than the target terrain as class 7 (aka noise). We also add CRS information and give each tile the base name ‘suzana.laz’.

lastile -i tiles_raw\*.laz ^
        -rescale 0.01 0.01 0.01 ^
        -auto_reoffset ^
        -set_classification 0 ^
        -classify_z_below_as 500.0 7 ^
        -tile_size 500 ^
        -buffer 25 -flag_as_withheld ^
        -epsg 31983 ^
        -odir tiles_buffered -o suzana.laz

With lasnoise we mark the many isolated points that are high above or below the terrain as class 7 (aka noise). Using two tiles we played around with the ‘step’ parameters until we find good parameter settings. See the README of lasnoise for the exact meaning and the choice of parameters for noise classification. We look at one of the resulting tiles with lasview.

lasnoise -i tiles_buffered\*.laz ^
         -step_xy 4 -step_z 2 ^
         -odir tiles_denoised -olaz ^
         -cores 3

lasview -i tiles_denoised\suzana_206000_7357000.laz ^
        -color_by_classification ^
        -win 1024 192

noise points shown in pink: all points (top), only noise points (bottom)

Next we use lasground to classify the last returns into ground (2) and non-ground (1). It is important to ignore the noise points with classification 7 to avoid the kind of bump we saw in the vendor-delivered classification. We again check the quality of the computed ground classification by producing a hillshaded DTM with las2dem. Here the las2dem command-line is sightly different as instead of buffering on-the-fly we use the buffers stored with each tile.

lasground -i tiles_denoised\*.laz ^
          -ignore_class 7 ^
          -nature -extra_fine ^
          -odir tiles_ground -olaz ^
          -cores 3

las2dem -i tiles_ground\*.laz ^
        -keep_class 2 -thin_with_grid 0.5 ^
        -hillshade ^
        -use_tile_bb ^
        -odir quality -odix _dtm_new -opng ^
        -cores 3

Finally, with lasheight we compute how high each return is above the triangulated surface of all ground returns and store this height value in place of the elevation value into the z coordinate using the ‘-replace_z’ switch. This height-normalizes the LiDAR in the sense that all ground returns are set to an elevation of 0 while all other returns get an elevation relative to the ground. The result are height-normalized LiDAR tiles that are ready for producing the desired forestry metrics.

lasheight -i tiles_ground\*.laz ^
          -replace_z ^
          -odir tiles_normalized -olaz ^
          -cores 3
Metric Production

The tool for computing the metrics for the entire area as well as for the individual field plots is lascanopy. Which metrics are well suited for your particular imputation calculation is your job to determine. Maybe first compute a large number of them and then eliminate the redundant ones. Do not use any point from the tile buffers for these calculations. We had flagged them as ‘withheld’ during the lastile operation, so they are easy to drop. We also want to drop the noise points that were classified as 7. And we were planning to drop that additional diagonal flightline we noticed during quality checking. We generated two lasinfo reports with the ‘-histo point_source 1’ option for the two tiles it was covering. From the two histograms it was easy to see that the diagonal flightline has the number 31.

First we run lascanopy on the 11 plots that you can download here. When running on plots it makes sense to first create a spatial indexing with lasindex for faster querying so that only those tiny parts of the LAZ file need to be loaded that actually cover the plots.

lasindex -i tiles_normalized\*.laz ^
         -cores 3

lascanopy -i tiles_normalized\*.laz -merged ^
          -drop_withheld ^
          -drop_class 7 ^
          -drop_point_source 31 ^
          -lop WKS_PLOTS.shp ^
          -cover_cutoff 3.0 ^
          -cov -dns ^
          -height_cutoff 2.0 ^
          -c 2.0 999.0 ^
          -max -avg -std -kur ^
          -p 25 50 75 95 ^
          -b 30 50 80 ^
          -d 2.0 5.0 10.0 50.0 ^
          -o plots.csv

The resulting ‘plots.csv’ file you can easily process in other software packages. It contains one line for each polygonal plot listed in the shapefile that lists its bounding box followed by all the requested metrics. But is why is there a zero maximum height (marked in orange) for plots 6 though 10? All height metrics are computed solely from returns that are higher than the ‘height_cutoff’ that was set to 2 meters. We added the ‘-c 2.0 999.0’ absolute count metric to keep track of the number of returns used in these calculations. Apparently in plots 6 though 10 there was not a single return above 2 meters as the count (also marked in orange) is zero for all these plots. Turns out this Eucalyptus stand had recently been harvested and the new seedlings are still shorter than 2 meters.

more plots.csv
index,min_x,min_y,max_x,max_y,max,avg,std,kur,p25,p50,p75,p95,b30,b50,b80,c00,d00,d01,d02,cov,dns
0,206260.500,7358289.909,206283.068,7358312.477,11.23,6.22,1.91,2.26,4.71,6.01,7.67,9.5,26.3,59.7,94.2,5359,18.9,41.3,1.5,76.3,60.0
1,206422.500,7357972.909,206445.068,7357995.477,13.54,7.5,2.54,1.97,5.32,7.34,9.65,11.62,26.9,54.6,92.2,7030,12.3,36.6,13.3,77.0,61.0
2,206579.501,7358125.909,206602.068,7358148.477,12.22,5.72,2.15,2.5,4.11,5.32,7.26,9.76,46.0,73.7,97.4,4901,24.8,28.7,2.0,66.8,51.2
3,206578.500,7358452.910,206601.068,7358475.477,12.21,5.68,2.23,2.64,4.01,5.14,7.18,10.04,48.3,74.1,95.5,4861,25.7,26.2,2.9,68.0,50.2
4,206734.501,7358604.910,206757.068,7358627.478,15.98,10.3,2.18,2.64,8.85,10.46,11.9,13.65,3.3,27.0,91.0,4946,0.6,32.5,44.5,91.0,77.5
5,207043.501,7358761.910,207066.068,7358784.478,15.76,10.78,2.32,3.43,9.27,11.03,12.49,14.11,3.2,20.7,83.3,4819,1.5,24.7,51.0,91.1,76.8
6,207677.192,7359630.526,207699.760,7359653.094,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,0.0
7,207519.291,7359372.366,207541.859,7359394.934,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,0.0
8,207786.742,7359255.850,207809.309,7359278.417,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,0.0
9,208159.017,7358997.344,208181.584,7359019.911,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,0.0
10,208370.909,7358602.565,208393.477,7358625.133,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,0.0

Then we run lascanopy on the entire area and produce one raster per tile for each metric. Here we remove the buffered points with the ‘-use_tile_bb’ switch that also ensures that the produced rasters have exactly the extend of the tiles without buffers. Again, it is imperative that you download the version 170327 (or higher) of LAStools for this to work correctly.

lascanopy -version
LAStools (by martin@rapidlasso.com) version 170327 (academic)

lascanopy -i tiles_normalized\*.laz ^
          -use_tile_bb ^
          -drop_class 7 ^
          -drop_point_source 31 ^
          -step 10 ^
          -cover_cutoff 3.0 ^
          -cov -dns ^
          -height_cutoff 2.0 ^
          -c 2.0 999.0 ^
          -max -avg -std -kur ^
          -p 25 50 75 95 ^
          -b 30 50 80 ^
          -d 2.0 5.0 10.0 50.0 ^
          -odir tile_metrics -oasc ^
          -cores 3

The resulting rasters in ASC format can easily be previewed using lasview for some “sanity checking” that our metrics make sense and to get a quick overview about what these metrics look like.

lasview -i tile_metrics\suzana_*max.asc
lasview -i tile_metrics\suzana_*p95.asc
lasview -i tile_metrics\suzana_*p50.asc
lasview -i tile_metrics\suzana_*p25.asc
lasview -i tile_metrics\suzana_*cov.asc
lasview -i tile_metrics\suzana_*d00.asc
lasview -i tile_metrics\suzana_*d01.asc
lasview -i tile_metrics\suzana_*b30.asc
lasview -i tile_metrics\suzana_*b80.asc

The maximum height rasters are useful to inspect more closely as they will immediately tell us if there was any high noise point that slipped through the cracks. And indeed it happened as we see a maximum of 388.55 meters for of the 10 by 10 meter cells. As we know the expected height of the trees we could have added a ‘-drop_z_above 70’ to the lascanopy command line. Careful, however, when computing forestry metrics in strongly sloped terrains as the terrain slope can significantly lift up returns to heights much higher than that of the tree. This is guaranteed to happen for LiDAR returns from branches that are extending horizontally far over the down-sloped part of the terrain as shown in this paper here.

We did not use the shapefile for the stands in this exercise. We could have clipped the normalized LiDAR points to these stands using lasclip as shown in the GUI below before generating the raster metrics. This would have saved space and computation time as many of the LiDAR points lie outside of the stands. However, it might be better to do that clipping step on the rasters in whichever GIS software or statistics package you are using for the imputation computation to properly account for partly covered raster cells along the stand boundary. This could be subject of another blog article … (-:

not all LiDAR was needed to compute metrics for

Leaked: “Classified LiDAR” of Pentagon in LAS 1.4 Format

LiDAR leaks have happened! Black helicopters are in the sky!  A few days ago a tiny tweet leaked the online location of “classified LiDAR” for Washington, DC. This LiDAR really is “classified” and includes an aerial scan of the Pentagon. For rogue scientists world-wide we offer a secret download link. It links to a file code-named ‘pentagon.laz‘ that contains the 8,044,789 “classified” returns of the Pentagon shown below. This “classified file” can be deciphered by any software with native LAZ support. It was encrypted with the “LAS 1.4 compatibility mode” of LASzip. The original LAS 1.4 content was encoded into a inconspicuous-looking LAZ file. New point attributes (such as the scanner channel) were hidden as “extra bytes” for fully lossless encryption. Use ‘laszip‘ to fully decode the original “classified” LAS 1.4 file … (-;

Seriously, a tiled LiDAR data set for the District of Columbia flown in 2015 is available for anyone to use on Amazon S3 with a very permissive open data license, namely the Creative Commons Attribution 3.0 License. The LiDAR coverage can be explored via this interactive map. The tiles are provided in LAS 1.4 format and use the new point type 6. We downloaded a few tiles near the White House, the Capitol, and the Pentagon to test the “native LAS 1.4 extension” of our LASzip compressor which will be released soon (a prototype for testing is already available). As these uncompressed LAS files are YUUUGE we use the command line utility ‘wget‘ for downloading. With option ‘-c’ the download continues where it left off in case the transfer gets interrupted.

LiDAR pulse density from 20 or less (blue) to 100 or more (red) pulses per square meter.

We use lasboundary to create labeled bounding boxes for display in Google Earth and lasgrid to a create false color visualization of pulse density with the command lines shown below. Pulse densities of 20 or below are mapped to blue. Pulse densities of 100 or above are mapped to red. We picked the min value 20 and the max value 100 for this false color mapping by running lasinfo with the ‘-cd’ option to compute an average pulse density and then refining the numbers experimentally. We also use lasoverlap to visualize how flightlines overlap and how well they align. Vertical differences of up to 20 cm are mapped to white and differences of 40 cm or more are mapped to saturated blue or red.

lasboundary -i *.las ^
            -use_bb ^
            -labels ^
            -odir quality -odix _bb -okml

lasgrid -i *.las ^
        -keep_last ^
        -point_density -step 2 ^
        -false -set_min_max 20 100 ^
        -odir quality -odix _d_20_100 -opng ^
        -cores 2

lasoverlap -i *.las ^
           -min_diff 0.2 -max_diff 0.4 ^
           -odir quality -opng ^
           -cores 2

The visualization of the pulse density and of the flightline overlap both show that there is no LiDAR for the White House or Capitol Hill. We will never know how tall the tomato and kale plants had grown in Michelle Obama’s organic garden on that day. Note that the White House and Capitol Hill were not simply “cut out”. Instead the flight plan of the survey plane was carefully designed to avoid these areas. Surprisingly, the Pentagon did not receive the same treatment and is (almost) fully included in the open LiDAR as mentioned in the dramatic first paragraph. Interesting is how the varying (tidal?) water level of the Potomac River shows up in the visualization of flightline miss-alignments.

There are a number of issues in these LiDAR files. The most serious ones are reported at the very end of this article. We will now scrutinize the partly-filled tile 2016.las close to the White House with only 11,060,334 returns. A lasvalidate check immediately reports three deviations from the LAS 1.4 specification:

lasvalidate -i 2016.las -o 2016_check.xml
  1. For proper LAS 1.4 files containing point type 6 through 10 all ‘legacy’ point counts in the LAS header should be set to 0. The following six fields in the LAS header should be zero for tile 2016.las (and all other tiles):
    + legacy number of point records
    + legacy number of points by return[0]
    + legacy number of points by return[1]
    + legacy number of points by return[2]
    + legacy number of points by return[3]
    + legacy number of points by return[4]
  2. There should not be any LiDAR return in a valid LAS file whose ‘number of returns of given pulse’ attribute is zero but there are 8 such points in tile 2016.las (and many more in various other tiles).
  3. There should not be any LiDAR return whose ‘return number’ attribute is larger than their ‘number of returns of given pulse’ attribute but there are 8 such points in tile 2016.las (and many more in various other tiles).

The first issue is trivial. There is an efficient in-place fix that does not require to rewrite the entire file using lasinfo with the following command line:

lasinfo -i 2016.las ^
        -nh -nv -nc ^
        -set_number_of_point_records 0 ^
        -set_number_of_points_by_return 0 0 0 0 0 ^

A quick check with las2txt shows us that the second and third issue are caused by the same eight points. Instead of writing an 8 for the ‘number of returns’ attribute the LAS file exporter must have written a 0 (marked in red for all eight returns) and instead of writing an 8 for the ‘return number’ attribute the LAS file exporter must have written a 1 (also marked in red). We can tell it from the true first return via its z coordinate (marked in blue) as the last return should be the lowest of all.

las2txt -i 2016.las ^
        -keep_number_of_returns 0 ^
        -parse xyzrnt ^
        -stdout
397372.70 136671.62 33.02 4 0 112813299.954811
397372.03 136671.64 28.50 5 0 112813299.954811
397371.28 136671.67 23.48 6 0 112813299.954811
397370.30 136671.68 16.86 7 0 112813299.954811
397369.65 136671.70 12.50 1 0 112813299.954811
397374.37 136671.58 44.17 3 0 112813299.954811
397375.46 136671.56 51.49 1 0 112813299.954811
397374.86 136671.57 47.45 2 0 112813299.954811

With las2las we can change the ‘number of returns’ from 0 to 8 using a ‘-filtered_transform’ as illustrated in the command line below. We suspect that higher number of returns such as 9 or 10 might have been mapped to 1 and 2. Fixing those as well as repairing the wrong return numbers will require a more complex tool. We would recommend to check all tiles with more scrutiny using the lasreturn tool. But wait … more return numbering issues are to come.

las2las -i 2016.las ^
        -keep_number_of_returns 0 ^
        -filtered_transform ^
        -set_extended_number_of_returns 8 ^
        -odix _fixed -olas

A closer look at the scan pattern reveals that the LiDAR survey was flown with a dual-beam system where two laser beams scan the terrain simultaneously. This is evident in the textual representation below as there are multiple “sets of returns” for the same GPS time stamp such as 112813952.110394. We group the returns from the two beams into an orange and a green group. Their coordinates show that the two laser beams point into different directions when they are simultaneously “shot” and therefore hit the terrain far apart from another.

las2txt -i 2016.las ^
        -keep_gps_time 112813952.110392 112813952.110396 ^
        -parse xyzlurntp ^
        -stdout
397271.40 136832.35 54.31 0 0 1 1 112813952.110394 117
397277.36 136793.35 38.68 0 1 1 4 112813952.110394 117
397277.35 136793.56 32.89 0 1 2 4 112813952.110394 117
397277.34 136793.88 24.13 0 1 3 4 112813952.110394 117
397277.32 136794.25 13.66 0 1 4 4 112813952.110394 117

The information about which point is from which beam is currently stored into the generic ‘user data’ attribute instead of into the dedicated ‘scanner channel’ attribute. This can be fixed with las2las as follows.

las2las -i 2016.las ^
        -copy_user_data_into_scanner_channel ^
        -set_user_data 0 ^
        -odix _fixed -olas

Unfortunately the LiDAR files have much more serious issues in the return numbering. It’s literally a “Total Disaster!” and “Sad!” as the US president will tweet shortly. After grouping all returns with the same GPS time stamp into an orange and a green group there is one more set of returns left unaccounted for.

las2txt -i 2016.las ^
        -keep_gps_time 112813951.416451 112813951.416455 ^
        -parse xyzlurntpi ^
        -stdout
397286.02 136790.60 45.90 0 0 1 4 112813951.416453 117 24
397286.06 136791.05 39.54 0 0 2 4 112813951.416453 117 35
397286.10 136791.51 33.34 0 0 3 4 112813951.416453 117 24
397286.18 136792.41 21.11 0 0 4 4 112813951.416453 117 0
397286.12 136791.75 30.07 0 0 1 1 112813951.416453 117 47
397291.74 136750.70 45.86 0 1 1 1 112813951.416453 117 105
las2txt -i 2016.las ^
        -keep_gps_time 112813951.408708 112813951.408712 ^
        -parse xyzlurntpi ^
        -stdout
397286.01 136790.06 45.84 0 0 1 4 112813951.408710 117 7
397286.05 136790.51 39.56 0 0 2 4 112813951.408710 117 15
397286.08 136790.96 33.33 0 0 3 4 112813951.408710 117 19
397286.18 136792.16 17.05 0 0 4 4 112813951.408710 117 0
397286.11 136791.20 30.03 0 0 1 2 112813951.408710 117 58
397286.14 136791.67 23.81 0 0 2 2 112813951.408710 117 42
397291.73 136750.16 45.88 0 1 1 1 112813951.408710 117 142

This can be visualized with lasview and the result is unmistakably clear: The return numbering is messed up. There should be one shot with five returns (not a group of four and a single return) in the first example. And there should be one shot with six returns (not a group of four and a group of two returns) in the second example. Such a broken return numbering results in extra first (or last) returns. These are serious issues that affect any algorithm that relies on the return numbering such as first-return DSM generation or canopy cover computation. Those extra returns will also make the pulse density appear higher and the pulse spacing appear tighter than they really are. The numbers from 20 (blue) to 100 (red) pulses per square meters in our earlier visualization are definitely inflated.

lasview -i 2016.las ^
        -keep_gps_time 112813951.416451 112813951.416455 ^
        -color_by_return

lasview -i 2016.las ^
        -keep_gps_time 112813951.408708 112813951.408712 ^
        -color_by_return

After all these troubles here something nice. Side-by-side a first-return TIN and a spike-free TIN (using a freeze of 0.8 m) of the center court cafe in the Pentagon. Especially given all these “fake first returns” in the Washington DC LiDAR we really need the spike-free algorithm to finally “Make a DSM great again!” … (-;

We would like to acknowledge the District of Columbia Office of the Chief Technology Officer (OCTO) for providing this data with a very permissive open data license, namely the Creative Commons Attribution 3.0 License.

 

NRW Open LiDAR: Merging Points into Proper LAS Files

In the first part of this series we downloaded, compressed, and viewed some of the newly released open LiDAR data for the state of North Rhine-Westphalia. In the second part we look at how to merge the multiple point clouds provided back into single LAS or LAZ files that are as proper as possible. Follow along with a recent version of LAStools and a pair of DGM and DOM files for your area of interest. For downloading the LiDAR we suggest using the wget command line tool with option ‘-c’ that after interruption in transmission will restart where it left off.

In the first part of this series we downloaded the pair of DGM and DOM files for the City of Bonn. The DGM file and the DOM file are zipped archives that contain the points in 1km by 1km tiles stored as x, y, z coordinates with centimeter resolution. We had already converted these textual *.xyz files into binary *.laz files. We did this with the open source LASzip compressor that is distributed with LAStools as described in that blog post. We continue now with the assumption that you have converted all of the *.xyz files to *.laz files as described here.

Mapping from tile names of DGM and DOM archives to classification and return type of points.

The mapping from tile names in DGM and DOM archives to the classification and return type of points: lp = last return. fp = first return, ab,aw,ag = synthetic points

There are multiple tiles for each square kilometer as the LiDAR has been split into different files based on classification and return type. Furthermore there are also synthetic points that were created by the land survey department to replace LiDAR under bridges and along buildings for generating higher quality rasters. We want to combine all points of a square kilometer into a single LAZ tile as it is usually expected. Simply merging the multiple files per tile is not an option as this would result in loosing point classifications and return type information as well as in duplicating all single returns that are stored in more than one file. The folks at OpenNRW offer this helpful graphic to know what the acronyms above mean:

Illustration of how acronyms used in tile names correspond to point classification and type.

Illustration of how acronyms used in tile names correspond to point classification and type.

In the following we’ll be looking at the set of files corresponding to the UTM tile 32366 / 5622. We wanted an interesting area with large buildings, a bridge, and water. We were looking for a suitable area using the KML overlays generated in part one. The tile along the Rhine river selected in the picture below covers the old city hall, the opera house, and the “Kennedy Bridge” has a complete set of DGM and DOM files:

      3,501 dgm1l-ab_32366_5622_1_nw.laz
     16,061 dgm1l-ag_32366_5622_1_nw.laz
      3,269 dgm1l-aw_32366_5622_1_nw.laz
    497,008 dgm1l-brk_32366_5622_1_nw.laz
  7,667,715 dgm1l-lpb_32366_5622_1_nw.laz
 12,096,856 dgm1l-lpnb_32366_5622_1_nw.laz
     15,856 dgm1l-lpub_32366_5622_1_nw.laz

      3,269 dom1l-aw_32366_5622_1_nw.laz
 21,381,106 dom1l-fp_32366_5622_1_nw.laz
We find the name of the tiles that cover the "Kennedy Bridge" using the KML overlays generated in part one.

We find the name of the tile that covers the “Kennedy Bridge” using the KML overlays generated in part one.

We now assign classification codes and flags to the returns from the different files using las2las, merge them together with lasmerge, and recover single, first, and last return information with lasduplicate. We set classifications to bridge deck (17), ground (2), to unclassified (1), and to noise (7) for all returns in the files with the acronym ‘brk’ (= bridge points), the acronym ‘lpb’ (= last return ground), the acronym ‘lpnb’ (= last return non-ground), and the acronym ‘lpub’ (= last return under ground). with las2las and store the resulting files to a temporary folder.

las2las -i dgm1l-brk_32366_5622_1_nw.laz ^
        -set_classification 17 ^
        -odir temp -olaz

las2las -i dgm1l-lpb_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -odir temp -olaz

las2las -i dgm1l-lpnb_32366_5622_1_nw.laz ^
        -set_classification 1 ^
        -odir temp -olaz

las2las -i dgm1l-lpub_32366_5622_1_nw.laz ^
        -set_classification 7 ^
        -odir temp -olaz

Next we use the synthetic flag of the LAS format specification to flag any additional points that were added (no measured) by the survey department to generate better raster products. We set classifications to ground (2) and the synthetic flag for all points of the files with the acronym ‘ab’ (= additional ground) and the acronym ‘ag’ (= additional building footprint). We set classifications to water (9) and the synthetic flag for all points of the files with the acronym ‘aw’ (= additional water bodies). Files with acronym ‘aw’ appear both in the DGM and DOM archive. Obviously we need to keep only one copy.

las2las -i dgm1l-ab_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

las2las -i dgm1l-ag_32366_5622_1_nw.laz ^
        -set_classification 2 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

las2las -i dgm1l-aw_32366_5622_1_nw.laz ^
        -set_classification 9 ^
        -set_synthetic_flag 1 ^
        -odir temp -olaz

Using lasmerge we merge all returns from files with acronyms ‘brk’ (= bridge points), ‘lpb’ (= last return ground),  ‘lpnb’ (= last return non-ground), and ‘lpub’ (= last return under ground) into a single file that will then contain all of the (classified) last returns for this tile.

lasmerge -i temp\dgm1l-brk_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpb_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpnb_32366_5622_1_nw.laz ^
         -i temp\dgm1l-lpub_32366_5622_1_nw.laz ^
         -o temp\dgm1l-lp_32366_5622_1_nw.laz

Next we run lasduplicate three times to recover which points are single returns and which points are the first and the last return of a pair of points generated by the same laser shot. First we run lasduplicate with option ‘-unique_xyz’ to remove any xyz duplicates from the last return file. We also mark all surviving returns as the second of two returns. Similarly, we remove any xyz duplicates from the first return file and mark all survivors as the first of two returns. Finally we run lasduplicate with option ‘-single_returns’ with the unique last and the unique first return files as ‘-merged’ input. If a return with the exact same xyz coordinates appears in both files only the first copy is kept and marked as a single return. In order to keep the flags and classifications from the last return file, the order in which the last and first return files are listed in the command line is important.

lasduplicate -i temp\dgm1l-lp_32366_5622_1_nw.laz ^
             -set_return_number 2 -set_number_of_returns 2 ^
             -unique_xyz ^
             -o temp\last_32366_5622_1_nw.laz

lasduplicate -i dom1l-fp_32366_5622_1_nw.laz ^
             -set_return_number 1 -set_number_of_returns 2 ^
             -unique_xyz ^
             -o temp\first_32366_5622_1_nw.laz

lasduplicate -i temp\last_32366_5622_1_nw.laz ^
             -i temp\first_32366_5622_1_nw.laz ^
             -merged ^
             -single_returns ^
             -o temp\all_32366_5622_1_nw.laz

We then add the synthetic points with another call to lasmerge to obtain a LAZ file containing all points of the tile correctly classified, flagged, and return-numbered.

lasmerge -i temp\dgm1l-ab_32366_5622_1_nw.laz ^
         -i temp\dgm1l-ag_32366_5622_1_nw.laz ^
         -i temp\dgm1l-aw_32366_5622_1_nw.laz ^
         -i temp\all_32366_5622_1_nw.laz ^
         -o temp\merged_32366_5622_1_nw.laz

Optional: For more efficient use of this file in subsequent processing – and especially to accelerate area-of-interest queries with lasindex – it is often of great advantage to reorder the points in a spatially coherent manner. A simple call to lassort will rearrange the points along a space-filling curve such as a Hilbert curve or a Z-order curve.

lassort -i temp\merged_32366_5622_1_nw.laz ^
        -o bonn_32366_5622_1_nw.laz

Note that we also renamed the file because a good name can be useful if you find that file again in two years from now. Let’s have a look at the result with lasview.

lasview -i bonn_32366_5622_1_nw.laz

In lasview you can press <c> repeatedly to switch through all available coloring modes until you see the yellow (single) / red (first) / last (blue) coloring of the returns. The recovered return types are especially evident under vegetation, in the presence of wires, and along building edges. Press <x> to select an area of interest and press <x> again to inspect it more closely. Press <i> while hovering above a point to show its coordinates, classification, and return type.

We did each processing in separate steps to illustrate the overall workflow. The above sequence of LAStools command line calls can be shortened by combining multiple processing steps into one operation. This is left as an exercise for the advanced LAStools user … (-;

Acknowledgement: The LiDAR data of OpenNRW comes with a very permissible license. It is called “Datenlizenz Deutschland – Namensnennung – Version 2.0” or “dl-de/by-2-0” and allows data and derivative sharing as well as commercial use. It only requires us to name the source. We need to cite the “Land NRW (2017)” with the year of the download in brackets and specify the Universal Resource Identification (URI) for both the DOM and the DGM. Done. So easy. Thank you, OpenNRW … (-:

NRW Open LiDAR: Download, Compression, Viewing

UPDATE: (March 6th): Second part merging Bonn into proper LAS files

This is the first part of a series on how to process the newly released open LiDAR data for the entire state of North Rhine-Westphalia that was announced a few days ago. Again, kudos to OpenNRW for being the most progressive open data state in Germany. You can follow this tutorial after downloading the latest version of LAStools as well as a pair of DGM and DOM files for your area of interest from these two download pages.

We have downloaded the pair of DGM and DOM files for the Federal City of Bonn. Bonn is the former capital of Germany and was host to the FOSS4G 2016 conference. As both files are larger than 10 GB, we use the wget command line tool with option ‘-c’ that will restart where it left off in case the transmission gets interrupted.

The DGM file and the DOM file are zipped archives that contain the points in 1km by 1km tiles stored as x, y, z coordinates in ETRS89 / UTM 32 projection as simple ASCII text with centimeter resolution (i.e. two decimal digits).

>> more dgm1l-lpb_32360_5613_1_nw.xyz
360000.00 5613026.69 164.35
360000.00 5613057.67 164.20
360000.00 5613097.19 164.22
360000.00 5613117.89 164.08
360000.00 5613145.35 164.03
[...]

There is more than one tile for each square kilometer as the LiDAR points have been split into different files based on their classification and their return type. Furthermore there are also synthetic points that were used by the land survey department to replace certain LiDAR points in order to generate higher quality DTM and DSM raster products.

The zipped DGM archive is 10.5 GB in size and contains 956 *.xyz files totaling 43.5 GB after decompression. The zipped DOM archive is 11.5 GB in size and contains 244 *.xyz files totaling 47.8 GB. Repeatedly loading these 90 GB of text data and parsing these human-readable x, y, and z coordinates is inefficient with common LiDAR software. In the first step we convert the textual *.xyz files into binary *.laz files that can be stored, read and copied more efficiently. We do this with the open source LASzip compressor that is distributed with LAStools using these two command line calls:

laszip -i dgm1l_05314000_Bonn_EPSG5555_XYZ\*.xyz ^
       -epsg 25832 -vertical_dhhn92 ^
       -olaz ^
       -cores 2
laszip -i dom1l_05314000_Bonn_EPSG5555_XYZ\*.xyz ^
       -epsg 25832 -vertical_dhhn92 ^
       -olaz ^
       -cores 2

The point coordinates are is in EPSG 5555, which is a compound datum of horizontal EPSG 25832 aka ETRS89 / UTM zone 32N and vertical EPSG 5783 aka the “Deutsches Haupthoehennetz 1992” or DHHN92. We add this information to each *.laz file during the LASzip compression process with the command line options ‘-epsg 25832’ and ‘-vertical_dhhn92’.

LASzip reduces the file size by a factor of 10. The 956 *.laz DGM files compress down to 4.3 GB from 43.5 GB for the original *.xyz files and the 244 *.laz DOM files compress down to 4.8 GB from 47.8 GB. From here on out we continue to work with the 9 GB of slim *.laz files. But before we delete the 90 GB of bulky *.xyz files we make sure that there are no file corruptions (e.g. disk full, truncated files, interrupted processes, bit flips, …) in the *.laz files.

laszip -i dgm1l_05314000_Bonn_EPSG5555_XYZ\*.laz -check
laszip -i dom1l_05314000_Bonn_EPSG5555_XYZ\*.laz -check

One advantage of having the LiDAR in an industry standard such as the LAS format (or its lossless compressed twin, the LAZ format) is that the header of the file stores the number of points per file, the bounding box, as well as the projection information that we have added. This allows us to very quickly load an overview for example, into lasview.

lasview -i dgm1l_05314000_Bonn_EPSG5555_XYZ\*.laz -GUI
The bounding boxes of the DGM files quickly display a preview of the data in the GUI when the files are in LAS or LAZ format.

The bounding boxes of the DGM files quickly give us an overview in the GUI when the files are in LAS or LAZ format.

Now we want to find a particular site in Bonn such as the World Conference Center Bonn where FOSS4G 2016 was held. Which tile is it in? We need some geospatial context to find it, for example, by creating an overview in form of KML files that we can load into Google Earth. We use the files from the DOM folder with “fp” in the name as points on buildings are mostly “first returns”. See what our previous blog post writes about the different file names or look at the second part of this series. We can create the KML files with lasboundary either via the GUI or in the command line.

lasboundary -i dom1l_05314000_Bonn_EPSG5555_XYZ\dom1l-fp*.laz ^
            -gui
Only the "fp" tiles from the DOM folder loaded the GUI into lasboundary.

Only the “fp” tiles from the DOM folder loaded the GUI into lasboundary.

lasboundary -i dom1l_05314000_Bonn_EPSG5555_XYZ\dom1l-fp*.laz ^
            -use_bb -labels -okml

We zoom in and find the World Conference Center Bonn and load the identified tile into lasview. Well, we did not expect this to happen, but what we see below will make this series of tutorials even more worthwhile. There is a lot of “high noise” in the particular tile we picked. We should have noticed the unusually high z range of 406.42 meters in the Google Earth pop-up. Is this high electromagnetic radiation interfering with the sensors? There are a number of high-tech government buildings with all kind of antennas nearby (such as the United Nations Bonn Campus the mouse cursor points at).

Significant amounts of high noise are in the first returns of the DOM tile we picked.

Significant amounts of high noise are in the first returns of the DOM tile we picked.

But the intended area of interest was found. You can see the iconic “triangulated” roof of the building that is across from the World Conference Center Bonn.

The World Conference Center Bonn is across from the building with the "triangulated" roof.

The World Conference Center Bonn is across from the building with the “triangulated” roof.

Please don’t think it is the responsibility of OpenNRW to remove the noise and provide cleaner data. The land survey has already processed this data into whatever products they needed and that is where their job ended. Any additional services – other than sharing the raw data – are not in their job description. We’ll take care of that … (-:

Acknowledgement: The LiDAR data of OpenNRW comes with a very permissible license. It is called “Datenlizenz Deutschland – Namensnennung – Version 2.0” or “dl-de/by-2-0” and allows data and derivative sharing as well as commercial use. It only requires us to name the source. We need to cite the “Land NRW (2017)” with the year of the download in brackets and specify the Universal Resource Identification (URI) for both the DOM and the DGM. Done. So easy. Thank you, OpenNRW … (-:

Generating Spike-Free Digital Surface Models from LiDAR

A Digital Surface Model (DSM) represents the elevation of the landscape including all vegetation and man-made objects. An easy way to generate a DSM raster from LiDAR is to use the highest elevation value from all points falling into each grid cell. However, this “binning” approach only works when then the resolution of the LiDAR is higher than the resolution of the raster. Only then sufficiently many LiDAR points fall into each raster cell to prevent “empty pixels” and “data pits” from forming. For example, given LiDAR with an average pulse spacing of 0.5 meters one can easily generate a 2.5 meter DSM raster with simple “binning”. But to generate a 0.5 meter DSM raster we need to use an “interpolation” method.

Returns of four fightlines on two trees.

Laser pulses and discrete returns of four fightlines.

For the past twenty or so years, GIS textbooks and LiDAR tutorials have recommened to use only the first returns to construct the interpolating surface for DSM generation. The intuition is that the first return is the highest return for an airborne survey where the laser beams come (more or less) from above. Hence, an interpolating surface of all first returns is constructed – usually based on a 2D Delaunay triangulation – and the resulting Triangular Irregular Network (TIN) is rasterized onto a grid at a user-specified resolution to create the DSM raster. The same way a Canopy Height Model (CHM) is generated except that elevations are height-normalized either before or after the rasterization step. However, using a first-return interpolation for DSM/CHM generation has two critical drawbacks:

(1) Using only first returns means not all LiDAR information is used and some detail is missing. This is particularly the case for off-nadir scan angles in traditional airborne surveys. It becomes more pronounced with new scanning systems such as UAV or hand-held LiDAR where laser beams no longer come “from above”. Furthermore, in the event of clouds or high noise the first returns are often removed and the remaining returns are not renumbered. Hence, any laser shot whose first return reflects from a cloud or a bird does not contribute its highest landscape hit to the DSM or CHM.

(2) Using all first returns practically guarantees the formation of needle-shaped triangles in vegetated areas and along building roofs that appear as spikes in the TIN. This is because at off-nadir scan angles first returns are often generated far below other first returns as shown in the illustration above. The resulting spikes turn into “data pits” in the corresponding raster that not only look ugly but impact the utility of the DSM or CHM in subsequent analysis, for example, in forestry applications when attempting to extract individual trees.

In the following we present results and command-line examples for the new “spike-free” algorithm by (Khosravipour et. al, 2015, 2016) that is implemented (as a slow prototype) in the current LAStools release. This completely novel method for DSM generation triangulates all relevant LiDAR returns using Contrained Delaunay algorithm. This constructs a “spike-free” TIN that is in turn rasterized into “pit-free” DSM or CHM. This work is both a generalization and an improvement of our previous result of pit-free CHM generation.

We now compare our “spike-free” DSM to a “first-return” DSM on the two small urban data sets “france.laz” and “zurich.laz” distributed with LAStools. Using lasinfo with options ‘-last_only’ and ‘-cd’ we determine that the average pulse spacing is around 0.33 meter for “france.laz” and 0.15 meter for “zurich.laz”. We decide to create a hillshaded 0.25 meter DSM for “france.laz” and a 0.15 meter DSM for “zurich.laz” with the command-lines shown below.

las2dem -i ..\data\france.laz ^
        -keep_first ^
        -step 0.25 ^
        -hillshade ^
        -o france_fr.png
las2dem -i ..\data\france.laz ^
        -spike_free 0.9 ^
        -step 0.25 ^
        -hillshade ^
        -o france_sf.png
las2dem -i ..\data\zurich.laz ^
           -keep_first ^
           -step 0.15 ^
           -hillshade ^
           -o zurich_fr.png
las2dem -i ..\data\zurich.laz ^
        -spike_free 0.5 ^
        -step 0.15 ^
        -hillshade ^
        -o zurich_sf.png

The differences between a first-return DSM and a spike-free DSM are most drastic along building roofs and in vegetated areas. To inspect in more detail the differences between a first-return and our spike-free TIN we use lasview that allows to iteratively visualize the construction process of a spike-free TIN.

lasview -i ..\data\france.laz -spike_free 0.9

Pressing <f> and <t> constructs the first-return TIN. Pressing <SHIFT> + <t> destroys the first-return TIN. Pressing <SHIFT> + <y> constructs the spike-free TIN. Pressing <y> once destroys the spike-free TIN. Pressing <y> many times iteratively constructs the spike-free TIN.

One crucial piece of information is still missing. What value should you use as the freeze constraint of the spike-free algorithm that we set to 0.9 for “france.laz” and to 0.5 for “zurich.laz” as the argument to the command-line option ‘-spike_free’. The optimal value is related to the expected edge-length and we found the 99th percentile of a histogram of edge lengths of the last-return TIN to be useful. Or simpler … try a value that is about three times the average pulse spacing.

References:
Khosravipour, A., Skidmore, A.K., Isenburg, M. and Wang, T.J. (2015) Development of an algorithm to generate pit-free Digital Surface Models from LiDAR, Proceedings of SilviLaser 2015, pp. 247-249, September 2015.
Khosravipour, A., Skidmore, A.K., Isenburg, M (2016) Generating spike-free Digital Surface Models using raw LiDAR point clouds: a new approach for forestry applications, (journal manuscript under review).