CyArk partners with Google, takes over “Don’t be Evil” Mantra, opens LiDAR Archive

One of our most popular (and controversial) blog articles was “Can You Copyright LiDAR“. It was written after we saw the then chief executive director at CyArk commenting “Sweeeet use of CyArk data” on an article describing the creation of a sugary fudge replica of Guatemala’s Tikal temple promoting a series of sugars by multinational agribusiness Tate & Lyle. Yet just a few months earlier our CEO’s university was instructed to take down his Web pages that – using the same data set – were demonstrating how to realize efficient 3D content delivery across the Web. CyArk told university administrators in an email that he was “[…] hosting unauthorized content from CyArk […]”. The full story is here.

Back then, the digital preservation strategy of CyArk was to keep their archaeological scans safe through their partnership with Iron Mountain. In the comment section of “Can You Copyright LiDAR” you can find several entries that are critical of this approach. But that was five years ago. Earlier this year and just after Google removed the “Don’t be Evil” mantra from their code of conduct, CyArk stepped up to take it over and completely changed their tight data control policies. Through their “Open Heritage initiative” CyArk released for the first time their raw LiDAR and imagery with an open license. Here in their own words:

In 2018, CyArk launched the Open Heritage initiative, a
collaboration with Google Arts and Culture to make available
our archive to a broader audience. This was the first time
CyArk has made available primary data sets, including lidar
scans, photogrammetric imagery and corresponding metadata
in a standardized format on a self-serve platform. We are
committed to opening up our archive further as we collect
new data and publishing existing projects where permissions
allow. The data is made available for education, research
and other non-commercial uses via a a Creative Commons
Attribution-NonCommercial 4.0 International License.

This is a HUGE change from the situation in 2013 that resulted in the deletion of our CEO’s Web pages. So we went to download Guatemala’s Tikal temple – the one that got him into trouble back then. It is provided as a single E57 file called ‘Tikal.e57’ with a size of 1074 MB that contains 35,551,759 points in 118 individual scan positions. Using the e572las.exe tool that is part of LAStools we converted this into a single LAZ file ‘Tikal.laz’ with a size of 164 MB.

C:\LAStools\bin>e572las -i c:\data\Tikal\Tikal.e57 ^
                        -o c:\data\Tikal\Tikal.laz

We were not able to find information about the Coordinate Reference System (CRS), but after looking at the coordinate bounding box (see lasinfo report at the end of the article) and the set of projections covering Guatemala, one can make an educated guess that it might be UTM 16 north. Generating a false-colored highest-return 0.5 meter raster with lasgrid and loading it into Google Earth quickly confirms that this is correct.

lasgrid -i c:\data\Tikal\Tikal.laz ^
        -step 0.5 ^
        -highest ^
        -false ^
        -utm 16north ^
        -odix _elev -opng

Now we can laspublish the file with the command line below to create an interactive 3D Web portal using Potree. Unlike five years ago we should now be permitted to create an online portal without the headaches of last time. The CC BY-NC 4.0 license allows to copy and redistribute the material in any medium or format.

laspublish -i c:\data\Tikal\Tikal.laz ^
           -rgb ^
           -utm 16north ^
           -o tikal.html ^
           -title "CyArk's LiDAR Scan of Tikal" ^
           -description "35,551,759 points from 118 individual scans (licensed CC BY-NC 4.0)" ^
           -odir C:\data\Tikal\Tikal -olaz ^
           -overwrite

Below are two screenshots of the online portal that we have just created including some quick distance measurements. This is amazing data. Wow!

Looking at “Templo del Gran Jaguar” from “La Gran Plaza” after taking two measurements.

Overlooking “La Gran Plaza” out of the upper opening of “Templo del Gran Jaguar” with “Templo del las Mascaras” in the back.

We congratulate CyArk to their new Open Heritage initiative and thank them for providing easy access to the Tikal temple LiDAR scans as open data with a useful Creative Commons Attribution-NonCommercial 4.0 International license. Thank you, CyArk, for your contribution to open data and open science. Kudos!

C:\LAStools\bin>lasinfo -i c:\data\Tikal\Tikal.laz
lasinfo (181119) report for 'c:\data\Tikal\Tikal.laz'
reporting all LAS header entries:
  file signature:             'LASF'
  file source ID:             0
  global_encoding:            0
  project ID GUID data 1-4:   00000000-0000-0000-0000-000000000000
  version major.minor:        1.2
  system identifier:          'LAStools (c) by Martin Isenburg'
  generating software:        'e572las.exe (version 180919)'
  file creation day/year:     0/0
  header size:                227
  offset to point data:       227
  number var. length records: 0
  point data format:          2
  point data record length:   26
  number of point records:    35551759
  number of points by return: 35551759 0 0 0 0
  scale factor x y z:         0.001 0.001 0.001
  offset x y z:               220000 1900000 0
  min x y z:                  220854.951 1905881.781 291.967
  max x y z:                  221115.921 1906154.829 341.540
LASzip compression (version 3.2r4 c2 50000): POINT10 2 RGB12 2
reporting minimum and maximum for all LAS point record entries ...
  X              854951    1115921
  Y             5881781    6154829
  Z              291967     341540
  intensity       24832      44800
  return_number       1          1
  number_of_returns   1          1
  edge_of_flight_line 0          0
  scan_direction_flag 0          0
  classification      0          0
  scan_angle_rank     0          0
  user_data           0          0
  point_source_ID     1        118
  Color R 0 65280
        G 0 65280
        B 0 65280
number of first returns:        35551759
number of intermediate returns: 0
number of last returns:         35551759
number of single returns:       35551759
overview over number of returns of given pulse: 35551759 0 0 0 0 0 0
histogram of classification of points:
        35551759  never classified (0)

City of Guadalajara creates first Open LiDAR Portal of Latin America

Small to medium sized LiDAR data sets can easily be published online for exploration and download with laspublish of LAStools, which is an easy-to-use wrapper around the powerful Potree open source software for which rapidlasso GmbH has been a major sponsor. During a workshop on LiDAR processing at CICESE in Ensenada, Mexico we learned that Guadalajara – the city with five “a” in its name – has recently published its LiDAR holdings online for download using an interactive 3D portal based on Potree.

There is a lot more data available in Mexico but only Guadalajara seems to have an interactive download portal at the moment with open LiDAR. Have a look at the map below to get an idea of the LiDAR holdings that are held in the archives of the Instituto Nacional de Estadística y Geografía (INEGI). You can request this data either by filling out this form or by sending an email to atencion.usuarios@inegi.org.mx. You will need to explain the use of the information, but apparently INEGI has a fast response time. I was given the KML files you see below and told that each letter in scale 1: 50,000 is divided into 6 regions (a-f) and each region subdivided into 4 parts. Contact me if you want the KML files or if you can provide further clarification on this indexing scheme and/or the data license.

LiDAR available at the Instituto Nacional de Estadística y Geografía (INEGI)

But back to Guadalajara’s open LiDAR. The tile names become visible when you zoom in closer on the map with the tiling overlay as seen below. An individual tile can easily be downloaded by first clicking so that it becomes highlighted and then pressing the “D” button in the lower left corner. We download the two tiles called ‘F08C04.laz’ and ‘F08C05.laz’ and use lasinfo to determine that their average density is 9.0 and 8.9 last returns per per square meter. This means on average 9 laser pulses were fired at each square meter in those two tiles.

lasinfo -i F08C04.laz -cd
lasinfo -i F08C05.laz -cd

Selecting a tile on the map and pressing the “D” button will download the highlighted tile.

The minimal quality check that we recommend doing for any newly obtained LiDAR data is to verify proper alignment of the flightlines using lasoverlap. For tiles with properly populated ‘point source ID’ fields this can be done using the command line shown below.

lasoverlap -i F08C04.laz F08C05.laz ^
           -min_diff 0.1 -max_diff 0.3 ^
           -odir quality -opng ^
           -cores 2

We notice some slight miss-alignments in the difference image (see other tutorials such as this one for how to interpret the resulting color images). We suggest you follow the steps done there to take a closer look at some of the larger strip-like areas that exhibit some systematic disscolorization (compared to other areas) into overly blueish or reddish tones of with lasview. Overlaying one of the resulting *_diff.png files in the GUI of LAStools makes it easy to pick a suspicious area.

We use the “pick” functionality to view only the building of interest.

Unusual are also the large red and blue areas where some of the taller buildings are. Usually those are just one pixel wide which has to do with the laser of one flightline not being able to see the lower area seen by the laser of the other flightline because the line-of-sight is blocked by the structure. We have a closer look at one of these unusual building colorization by picking the building shown above and viewing it with the different visualization options that are shown in the images below.

No. Those are not the “James Bond movie” kind of lasers that burn holes into the building to get ground returns through several floors. The building facade is covered with glass so that the lasers do not scatter photons when they hit the side of the building. Instead they reflect by the usual rule “incidence angle equals reflection angle” of perfectly specular surfaces and eventually hit the ground next to the building. Some of the photons travel back the same way to the receiver on the plane where they get registered as returns. The LiDAR system has no way to know that the photons did not travel the usual straight path. It only measures the time until the photons return and generates a return at the range corresponding to this time along the direction vector that this laser shot was fired at. If the specular reflection of the photons hits a truck or a tree situated next to to building, then we should find that truck or that tree – mirrored by the glossy surface of the building – on the inside of the building. If you look careful at the “slice” through the building below you may find an example … (-:

Some objects located outside the building are mirrored into the building due to its glossy facade.

Kudos to the City of Guadalajara for becoming – to my knowledge – the first city in Latin America to both open its entire LiDAR holdings and also making it available for download in form of a nice and functional interactive 3D portal.

Scrutinizing LiDAR Data from Leica’s Single Photon Scanner SPL100 (aka SPL99)

We show how simple reordering and clever remapping of single photon LiDAR data can reduce file size by a whopping 50%. We also show that there is at least one Leica’s SPL100 sensor out there that should be called SPL99 because one of its 100 beamlets (the one with beamlet ID 53) does not seem to produce any data … (-:

Closeup on the returns of two beamlet shots colored by beamlet ID from 1 (blue) to 100 (red). Beamlet ID 53 is missing.

Following up on a recent discussion in the LAStools user forum we take a closer look at some of the single photon LiDAR collected with Leica’s SPL100 sensor made available as open data by the USGS in form of LASzip-compressed tiles in LAS 1.4 format of point type 6. This investigation was sparked by the curiosity of what value was stored to the “scanner channel” field that was added to the new point types 6 to 10 in the LAS 1.4 specification.

lasview -i USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120310_LAS_2018.laz ^
        -copy_scanner_channel_into_point_source ^
        -color_by_flightline

Visualizing this 2 bit number whose value can range from 0 to 3 for the first tile we downloaded resulted in this non-conclusive “magic eye” visualization. What do you see? A sailboat?

Visualizing the “scanner channel” field by mapping its four different values to different colors.

Jason Stoker from the USGS suggested that this is the truncated “beamlet” ID. Leica’s SPL100 sensor uses 100 beamlets rather than one or two laser beams to collect data. Storing the beamlet IDs between 1 and 100 to this 2 bit field that can only hold numbers between 0 and 3 is kind of pointless and should be avoided. LASzip switches prediction contexts based on this field resulting in slower compression speed and lower compression rates. The beamlet ID is also stored in the 8 bit “user data” field, so that we can simply zero the “scanner channel” field. To investigate this further we downloaded these nine tiles from this FTP site of the USGS:

Whenever we download LAZ files we first run laszip with the ‘-check’ option which performs a sanity check to make sure that the files are not truncated or otherwise corrupted. In our case we get nine solid reports of SUCCESS.

laszip -i USGS_LPC_SD_MORiver_Woolpert_B1_*_2018.laz -check

A visual inspection with lasview tells us that there are a number of flightlines in the data.

lasview -i USGS_LPC_SD_MORiver_Woolpert_B1_*_2018.laz ^
        -points 15000000 ^
        -color_by_flightline

We use las2las to extract flightline 2003 and lasinfo to produce a histogram of GPS times which we use in turn to decide on which quarter second of GPS time worth of data we want to extract again with las2las.

las2las -i USGS_LPC_SD_MORiver_Woolpert_B1_2016_*_LAS_2018.laz ^
        -merged ^
        -keep_point_source 2003 ^
        -o USGS_LPC_SD_MORiver_Woolpert_B1_ps_2002.laz

lasinfo -i USGS_LPC_SD_MORiver_Woolpert_B1_ps_2002.laz ^
        -cd ^
        -histo gps_time 1 ^
        -odix _info -otxt

las2las -i USGS_LPC_SD_MORiver_Woolpert_B1_ps_2002.laz ^
        -keep_gps_time 176475495 176475495.25 ^
        -o USGS_LPC_SD_MORiver_Woolpert_B1_gps176475495_quarter.laz

It always helps to give your LAZ files meaningful names in case you find them again two years later or so. We can nicely see the circular scanning pattern Leica’s SPL100 sensor. With lasview we measure that this single flightline has an extent of about 2000 meters on the ground. The lasinfo report shows a pulse density of around 19 last returns per square meter. We then sort the points by GPS time using lassort. This groups together all the returns that are the result of one “shot” of the laser with 100 beamlets as we can nicely see in the las2txt output below. Each group of returns has slightly below 100 points and there is one group every 0.00002 seconds. This means the SPL100 is firing once every 20 microseconds.

lassort -i USGS_LPC_SD_MORiver_Woolpert_B1_gps176475495_quarter.laz ^
        -gps_time ^
        -odix _sorted -olaz

las2txt -i USGS_LPC_SD_MORiver_Woolpert_B1_gps176475495_quarter_sorted.laz ^
        -parse tuxyz ^
        -stdout | more
176475495.000008 4 514408.78 4830989.78 487.79
176475495.000008 9 514410.38 4830987.49 487.70
176475495.000008 47 514411.49 4830987.71 487.70
        [ ... 86 lines deleted ... ]
176475495.000008 39 514408.53 4830991.81 487.80
176475495.000008 50 514407.97 4830991.69 487.80
176475495.000008 16 514409.24 4830991.46 487.85
176475495.000028 55 514413.51 4830985.79 487.61
176475495.000028 97 514411.10 4830990.03 487.74
176475495.000028 72 514411.30 4830989.53 487.74
        [ ... 82 lines deleted ... ]
176475495.000028 45 514410.30 4830986.19 487.70
176475495.000028 3 514409.15 4830987.52 487.73
176475495.000028 96 514411.81 4830985.46 487.67
176475495.000048 66 514411.35 4830985.15 487.67
176475495.000048 83 514411.59 4830984.65 487.61
176475495.000048 64 514413.09 4830983.93 487.61
        [ ... 78 lines deleted ... ]
176475495.000048 4 514407.30 4830984.82 487.70
176475495.000048 34 514408.65 4830983.01 487.70
176475495.000048 21 514408.11 4830982.90 487.70
176475495.000068 13 514408.25 4830981.13 487.66
176475495.000068 92 514410.53 4830984.23 487.68
176475495.000068 44 514407.17 4830980.88 487.67
        [ ... 80 lines deleted ... ]
176475495.000068 76 514408.67 4830984.37 487.71
176475495.000068 47 514409.23 4830980.27 487.67
176475495.000068 87 514412.11 4830981.93 487.61
176475495.000088 97 514408.80 4830982.62 487.70
176475495.000088 33 514407.24 4830980.68 487.64
176475495.000088 30 514407.36 4830981.77 487.68
[ ... ]

Now we can “play back” the returns in acquisition order. We map returns from one group to the same color in lasview with the new ‘-bin_gps_time_into_point_source 0.00002’ option (that will be available in the next LAStools release). For a slower playback we add ‘-steps 5000’. Press the ‘c’ key to switch through the coloring options. Press the ‘s’ key repeatedly to incrementally show the points. To take a step back press <SHIFT>+’s’.

lasview -i USGS_LPC_SD_MORiver_Woolpert_B1_gps176475495_quarter_sorted.laz ^
        -bin_gps_time_into_point_source 0.00002 ^
        -scale_user_data 2.5 ^
        -steps 5000 ^
        -win 1024 384

This slideshow requires JavaScript.

The last image colors the points by the values in the user data field (multiplied by 2.5), which essentially maps the beamlet IDs between 1 and 100 to a rainbow color ramp from blue to red. This tells us how the numbering of the beamlets from 1 to 100 corresponds to their layout in space. The next sequence of images takes a closer look at that.

This slideshow requires JavaScript.

From a compression point of view it makes sense to (1) zero the meaningless scanner channel, (2) order the points by GPS time stamps to groups beamlet returns together, and (3) order the points with the same time stamp by the user data field. The compression gain is enormous with the 9 tiles going from over 3 GB to under 2 GB:

ORIGINAL:
337,156,981 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120300_LAS_2018.laz
331,801,150 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120310_LAS_2018.laz
358,928,274 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120320_LAS_2018.laz
328,597,628 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130300_LAS_2018.laz
355,997,013 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130310_LAS_2018.laz
360,403,079 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130320_LAS_2018.laz
355,399,781 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140300_LAS_2018.laz
354,523,659 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140310_LAS_2018.laz
357,248,968 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140320_LAS_2018.laz
  3,140,056,533 Bytes

IMPROVED:
197,641,087 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120300_LAS_2018_sorted.laz
194,750,096 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120310_LAS_2018_sorted.laz
210,013,408 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120320_LAS_2018_sorted.laz
190,687,275 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130300_LAS_2018_sorted.laz
206,447,730 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130310_LAS_2018_sorted.laz
209,580,551 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130320_LAS_2018_sorted.laz
205,827,197 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140300_LAS_2018_sorted.laz
203,808,113 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140310_LAS_2018_sorted.laz
206,789,959 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140320_LAS_2018_sorted.laz
  1,825,545,416 Bytes

Enumerating the 100 beamlets with a geometrically more coherent order would improve compression even more. Can anyone convince Leica to do this? The simple mapping of beamlet IDs shown below that arranges the beamlets into a zigzag order another huge compression gain of 15 percent. Altogether reordering and remapping lower the compressed file size by a whopping 50 percent.

Beamlet ID mapping table to improve spatial coherence.

168,876,666 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120300_LAS_2018_mapped_sorted.laz
165,241,508 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120310_LAS_2018_mapped_sorted.laz
176,524,959 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP120320_LAS_2018_mapped_sorted.laz
163,679,216 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130300_LAS_2018_mapped_sorted.laz
176,086,559 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130310_LAS_2018_mapped_sorted.laz
178,909,108 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP130320_LAS_2018_mapped_sorted.laz
174,735,634 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140300_LAS_2018_mapped_sorted.laz
171,679,105 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140310_LAS_2018_mapped_sorted.laz
174,997,090 USGS_LPC_SD_MORiver_Woolpert_B1_2016_14TNP140320_LAS_2018_mapped_sorted.laz
  1,550,729,845 Bytes

Once this is done a final space-filling sort into a Hilbert-curve or a Morton-order with lassort or lasoptimize would improve spatial coherence for efficient spatial indexing with lasindex.

Oh yes … the SPL100 was not firing on all cylinders. The beamlet ID 53 that would have mapped to 61 in our table was not present in any of the 9 tiles with 355,047,478 points that we had downloaded as the lasinfo histogram below shows.

lasinfo -i USGS_LPC_SD_MORiver_Woolpert_B1_2016_*_2018.laz -merged -histo user_data 1
lasinfo (180911) report for 9 merged files
reporting all LAS header entries:
  file signature:             'LASF'
  file source ID:             0
  global_encoding:            17
  project ID GUID data 1-4:   194774FA-35FE-4591-D484-010AFA13F6D9
  version major.minor:        1.4
  system identifier:          'Woolpert LAS'
  generating software:        'GeoCue LAS Updater'
  file creation day/year:     332/2017
  header size:                375
  offset to point data:       1376
  number var. length records: 1
  point data format:          6
  point data record length:   30
  number of point records:    0
  number of points by return: 0 0 0 0 0
  scale factor x y z:         0.01 0.01 0.01
  offset x y z:               0 0 0
  min x y z:                  512000.00 4830000.00 286.43
  max x y z:                  514999.99 4832999.99 866.81
  start of waveform data packet record: 0
  start of first extended variable length record: 0
  number of extended_variable length records: 0
  extended number of point records: 355047478
  extended number of points by return: 298476060 52480771 3929583 157365 3699 0 0 0 0 0 0 0 0 0 0
variable length header record 1 of 1:
  reserved             0
  user ID              'LASF_Projection'
  record ID            2112
  length after header  943
  description          'OGC WKT Coordinate System'
    WKT OGC COORDINATE SYSTEM:
    COMPD_CS["NAD83(2011) / UTM zone 14N + NAVD88 height - Geoid12B (metre)",PROJCS["NAD83(2011) / UTM zone 14N",GEOGCS["NAD83(2011)",DATUM["NAD83_National_Spat
ial_Reference_System_2011",SPHEROID["GRS 1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","1116"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","
8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","6318"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0]
,PARAMETER["central_meridian",-99],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EP
SG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","6343"]],VERT_CS["NAVD88 height - Geoid12B (metre)",VERT_DATUM["North American Vertica
l Datum 1988",2005,AUTHORITY["EPSG","5103"]],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Gravity-related height",UP],AUTHORITY["EPSG","5703"]]]
the header is followed by 4 user-defined bytes
LASzip compression (version 3.1r0 c3 50000): POINT14 3
reporting minimum and maximum for all LAS point record entries ...
  X            51200000   51499999
  Y           483000000  483299999
  Z               28643      86681
  intensity        3139      12341
  return_number       1          5
  number_of_returns   1          5
  edge_of_flight_line 0          0
  scan_direction_flag 0          1
  classification      1         10
  scan_angle_rank  -127        127
  user_data           1        100
  point_source_ID  1061       2005
  gps_time 176475467.194000 176496233.636563
  extended_return_number          1      5
  extended_number_of_returns      1      5
  extended_classification         1     10
  extended_scan_angle        -21167  21167
  extended_scanner_channel        0      3
number of first returns:        298476060
number of intermediate returns: 6282
number of last returns:         355000765
number of single returns:       298435629
overview over extended number of returns of given pulse: 298435629 52515017 3935373 157750 3709 0 0 0 0 0 0 0 0 0 0
histogram of classification of points:
       138382030  unclassified (1)
       207116732  ground (2)
         9233160  noise (7)
          310324  water (9)
            5232  rail (10)
 +-> flagged as withheld:  9233160
 +-> flagged as extended overlap: 226520346
user data histogram with bin size 1.000000
  bin 1 has 3448849
  bin 2 has 3468566
  bin 3 has 3721848
  bin 4 has 3376990
  bin 5 has 3757996
  bin 6 has 3479546
  bin 7 has 3799930
  bin 8 has 3766887
  bin 9 has 3448383
  bin 10 has 3966036
  bin 11 has 3232086
  bin 12 has 3686789
  bin 13 has 3763869
  bin 14 has 3847765
  bin 15 has 3659059
  bin 16 has 3666918
  bin 17 has 3427468
  bin 18 has 3375320
  bin 19 has 3222116
  bin 20 has 3598643
  bin 21 has 3108323
  bin 22 has 3553625
  bin 23 has 3782185
  bin 24 has 3577792
  bin 25 has 3063871
  bin 26 has 3451800
  bin 27 has 3518763
  bin 28 has 3845852
  bin 29 has 3366980
  bin 30 has 3797986
  bin 31 has 3623477
  bin 32 has 3606798
  bin 33 has 3762737
  bin 34 has 3861023
  bin 35 has 3821228
  bin 36 has 3738173
  bin 37 has 3902190
  bin 38 has 3726752
  bin 39 has 3910989
  bin 40 has 3771132
  bin 41 has 3718437
  bin 42 has 3609113
  bin 43 has 3339941
  bin 44 has 3003191
  bin 45 has 3697140
  bin 46 has 2329171
  bin 47 has 3398836
  bin 48 has 3511882
  bin 49 has 3719592
  bin 50 has 2995275
  bin 51 has 3673925
  bin 52 has 3535992
  bin 54 has 3799430
  bin 55 has 3613345
  bin 56 has 3761436
  bin 57 has 3296831
  bin 58 has 3810146
  bin 59 has 3768464
  bin 60 has 3520871
  bin 61 has 3833149
  bin 62 has 3639778
  bin 63 has 3623008
  bin 64 has 3581480
  bin 65 has 3663180
  bin 66 has 3661434
  bin 67 has 3684374
  bin 68 has 3723125
  bin 69 has 3552397
  bin 70 has 3554207
  bin 71 has 3535494
  bin 72 has 3621334
  bin 73 has 3633928
  bin 74 has 3631845
  bin 75 has 3526502
  bin 76 has 3605631
  bin 77 has 3452006
  bin 78 has 3796382
  bin 79 has 3731841
  bin 80 has 3683314
  bin 81 has 3806024
  bin 82 has 3749709
  bin 83 has 3808218
  bin 84 has 3634032
  bin 85 has 3631015
  bin 86 has 3712206
  bin 87 has 3627775
  bin 88 has 3674966
  bin 89 has 3231151
  bin 90 has 3780037
  bin 91 has 3621958
  bin 92 has 3623264
  bin 93 has 3853536
  bin 94 has 3623380
  bin 95 has 3418309
  bin 96 has 3374827
  bin 97 has 3464734
  bin 98 has 3562560
  bin 99 has 3078686
  bin 100 has 3426924

 

Estonia leads in Open LiDAR: nationwide & multi-temporal Point Clouds now Online

At the beginning of July 2018 the Baltic country of Estonia – with an area of 45 thousand square kilometers inhabited by around 1.3 million people – opened much of their geospatial data archives and is now offering easy and free download of LiDAR point clouds nationwide via a portal of the Estonian Land Board. What is even more exciting is that multi-temporal data sets flown in different years and seasons are available. Raw LiDAR point clouds collected either during a “regular flight in spring” or during a “forestry flight in summer” can be obtained for multiple years. The 1 km by 1 km tile with map sheet index 377650, for example, is available for four different LiDAR surveys carried out in spring 2011, summer 2013, spring 2015 and summer 2017. This offers incredible potential for studying temporal changes of man-made or natural environments. The screenshot sequence below shows how to navigate to the download site starting from this page.

We found out about this open data release during our hands-on workshop on LiDAR and photogrammetry point cloud processing with LAStools that was part of the UAV remote sensing summer school in Tartu, Estonia. See our calendar for upcoming events or contact us for holding a similar event at your university, agency, company, or conference. 

The LiDAR data provided on the download portal is compressed with LASzip and provided as 1km by 1km LiDAR tiles in LAZ format. You can search for these tiles via their Estonian 1:2000 map sheet indices. To find out which map sheet index corresponds to the tile you are interested in you can overlay the maps sheet indices over an online map. However, you will need to zoom in before you can see the indices as illustrated in the screenshot sequence below. Here a zoom to the map sheet indices for the area that we visited during the social event of the summer school.

One thing we noticed is that the tiles contain only a single layer of points. The overlaps between flightlines were removed which results in a more uniform point density but strips the user of the possibility to do their own flightline alignment checks with lasoverlap. Below you see the spring 2014 acquisition for the tile with map sheet index 475861 colored by classification, elevation, return type, flightline ID and intensity.

The license for the open data of the Estonian Land Board is very permissive and can be found here. Agreeing to the licence gives the licence holder the rights to use data free of charge for an unspecified term, to good purpose in accordance with law and best practice. Licence holder may produce derivatives of data, combine data with its own products or services, use data for commercial or non-commercial purposes and redistribute data. The licence holder obliges to refer to the origin of data when publishing and redistributing data. The reference must include the name of the licensor, the title of data, the age of data (or the date of data extraction).

Scotland’s LiDAR goes Open Data (too)

Following the lead of England and Wales, the Scottish LiDAR is now also open data. The implementation of such an open geospatial policy in the United Kingdom was spear-headed by the Environment Agency of England who started to make all of their LiDAR holdings available as open data. In September 2015 they opened DTM and DSM raster derivatives down to 25 cm resolution and in March 2016 also the raw point clouds went online our compressed and open LAZ format (more info here) – all with the very permissible Open Government Licence v3. This treasure cove of geospatial data was collected by the Environment Agency Geomatics own survey aircraft mainly for flood mapping purposes. The data that had been access restricted for the past 17 years of operation and was made open only after it was shown that restricting access in order to recover costs to finance future operations – a common argument for withholding tax-payer funded data – was nothing but an utter myth. This open data policy has resulted in an incredible re-use of the LiDAR and the Environment Agency has literally been propelled into the role of a “champion for open data” inspiring Wales (possibly the German states of North-Rhine Westfalia and Thuringia) and now also Scotland to open up their geospatial archives as well …

Huge LAS files available for download from the Scottish Open Data portal.

We went to the nice online portal of Scotland to download three files from the Phase II LiDAR for Scotland that are provided as uncompressed LAS files, namely LAS_NN45NE.las, LAS_NN55NE.las, and LAS_NN55NW.las, whose sizes are listed as 1.2 GB, 2.8 GB, and 4.7 GB in the screenshot above. Needless to say that it took quite some time and several restarts (using wget with option ‘-c’) to successfully download these very large LAS files.

laszip -i LAS_NN45NE.las -odix _cm -olaz -rescale 0.01 0.01 0.01 
laszip -i LAS_NN45NE.las -odix _mm -olaz
laszip -i LAS_NN55NE.las -odix _cm -olaz -rescale 0.01 0.01 0.01 
laszip -i LAS_NN55NE.las -odix _mm -olaz
laszip -i LAS_NN55NW.las -odix _cm -olaz -rescale 0.01 0.01 0.01 
laszip -i LAS_NN55NW.las -odix _mm -olaz

After downloading we decided to see how well these files compress with LASzip by running the six commands shown above creating LAZ files when re-scaling of coordinate resolution to centimeter (cm) and LAZ files with the original millimeter (mm) coordinate resolution (i.e. the original scale factors are 0.001 which is somewhat excessive for aerial LiDAR where the error in position per coordinate is typically between 5 cm and 20 cm). Below you see the resulting file sizes for the three different files.

 1,164,141,247 LAS_NN45NE.las
   124,351,690 LAS_NN45NE_cm.laz (1 : 9.4)
   146,651,719 LAS_NN45NE_mm.laz (1 : 7.9)
 2,833,123,863 LAS_NN55NE.las
   396,521,115 LAS_NN55NE_cm.laz (1 : 7.1)
   474,767,495 LAS_NN55NE_mm.laz (1 : 6.0)
 4,664,782,671 LAS_NN55NW.las
   531,454,473 LAS_NN55NW_cm.laz (1 : 8.8)
   629,141,151 LAS_NN55NW_mm.laz (1 : 7.4)

The savings in download time and storage space of storing the LiDAR in LAZ versus LAS are sixfold to tenfold. If I was a tax payer in Scotland and if my government was hosting open data on in the Amazon cloud (i.e. paying for AWS cloud services with my taxes) I would encourage them to store their data in a more compressed format. Some more details on the data.

According to the provided meta data, the Scottish Public Sector LiDAR Phase II dataset was commissioned by the Scottish Government in response to the Flood Risk Management Act (2009). The project was managed by Sniffer and the contract was awarded to Fugro BKS. Airborne LiDAR data was collected for 66 sites (the dataset does not have full national coverage) totaling 3,516 km^2 between 29th November 2012 and 18th April 2014. The point density was a minimum of 1 point/sqm, and approximately 2 points/sqm on average. A DTM and DSM were produced from the point clouds, with 1m spatial resolution. The Coordinate reference system is OSGB 1936 / British National Grid (EPSG code 27700). The data is licensed under an Open Government Licence. However, under the use constraints section it now only states that the following attribution statement must be used to acknowledge the source of the information: “Copyright Scottish Government and SEPA (2014)” but also that Fugro retain the commercial copyright, which is somewhat disconcerting and may require more clarification. According to this tweet a lesser license (NCGL) applies to the raw LiDAR point clouds. Below a lasinfo report for the large LAS_NN55NW.las as well as several visualizations with lasview.

lasinfo (170915) report for LAS_NN55NW.las
reporting all LAS header entries:
 file signature: 'LASF'
 file source ID: 0
 global_encoding: 1
 project ID GUID data 1-4: 00000000-0000-0000-0000-000000000000
 version major.minor: 1.2
 system identifier: 'Riegl LMS-Q'
 generating software: 'Fugro LAS Processor'
 file creation day/year: 343/2016
 header size: 227
 offset to point data: 227
 number var. length records: 0
 point data format: 1
 point data record length: 28
 number of point records: 166599373
 number of points by return: 149685204 14102522 2531075 280572 0
 scale factor x y z: 0.001 0.001 0.001
 offset x y z: 250050 755050 270
 min x y z: 250000.000 755000.000 203.731
 max x y z: 254999.999 759999.999 491.901
reporting minimum and maximum for all LAS point record entries ...
 X -50000 4949999
 Y -50000 4949999
 Z -66269 221901
 intensity 39 2046
 return_number 1 4
 number_of_returns 1 4
 edge_of_flight_line 0 1
 scan_direction_flag 1 1
 classification 1 11
 scan_angle_rank -30 30
 user_data 0 3
 point_source_ID 66 91
 gps_time 38230669.389034 38402435.753789
number of first returns: 149685204
number of intermediate returns: 2813604
number of last returns: 149687616
number of single returns: 135599244
overview over number of returns of given pulse: 135599244 23122229 6754118 1123782 0 0 0
histogram of classification of points:
 287819 unclassified (1)
 109019874 ground (2)
 14476880 low vegetation (3)
 3487218 medium vegetation (4)
 39141518 high vegetation (5)
 165340 building (6)
 13508 rail (10)
 7216 road surface (11)

Kudos to the Scottish government for opening their data. We hereby acknowledge the source of the LiDAR that we have used in the experiments above as “Copyright Scottish Government and SEPA (2014)”.

LASmoons: Gudrun Norstedt

Gudrun Norstedt (recipient of three LASmoons)
Forest History, Department of Forest Ecology and Management
Swedish University of Agricultural Sciences, Umeå, Sweden

Background:
Until the end of the 17th century, the vast boreal forests of the interior of northern Sweden were exclusively populated by the indigenous Sami. When settlers of Swedish and Finnish ethnicity started to move into the area, colonization was fast. Although there is still a prospering reindeer herding Sami culture in northern Sweden, the old Sami culture that dominated the boreal forest for centuries or even millenia is to a large extent forgotten.
Since each forest Sami family formerly had a number of seasonal settlements, the density of settlements must have been high. However, only very few remains are known today. In the field, old Sami settlements can be recognized through the presence of for example stone hearths, storage caches, pits for roasting pine bark, foundations of certain types of huts, reindeer pens, and fences. Researchers of the Forest History section of the Department of Forest Ecology and Management have long been surveying such remains on foot. This, however, is extremely time consuming and can only be done in limited areas. Also, the use of aerial photographs is usually difficult due to dense vegetation. Data from airborne laser scanning should be the best way to find remains of the old forest Sami culture. Previous research has shown the possibilities of using airborne laser scanning data for detecting cultural remains in the boreal forest (Jansson et al., 2009; Koivisto & Laulamaa, 2012; Risbøl et al., 2013), but no studies have aimed at detecting remains of the forest Sami culture. I want to test the possibilities of ALS in this respect.

DTM from the Krycklan catchment, showing a row of hunting pits and (larger) a tar pit.

Goal:
The goal of my study is to test the potential of using LiDAR data for detecting cultural and archaeological remains on the ground in a forest area where Sami have been known to dwell during historical times. Since the whole of Sweden is currently being scanned by the National Land Survey, this data will be included. However, the average point density of the national data is only 0,5–1 pulses/m^2. Therefore, the study will be done in an established research area, the Krycklan catchment, where a denser scanning was performed in 2015. The Krycklan data set lacks ground point classification, so I will have to perform such a classification before I can proceed to the creation of a DTM. Having tested various kind of software, I have found that LAStools seems to be the most efficient way to do the job. This, in turn, has made me aware of the importance of choosing the right methods and parameters for doing a classification that is suitable for archaeological purposes.

Data:
The data was acquired with a multi-spectral airborne LiDAR sensor, the Optech Titan, and a Micro IRS IMU, operated on an aircraft flying at a height of about 1000 m and positioning was post-processed with the TerraPos software for higher accuracy.
The average pulse density is 20 pulse/m^2.
+ About 7 000 hectares were covered by the scanning. The data is stored in 489 tiles.

LAStools processing:
1) run a series of classifications of a few selected tiles with both lasground and lasground_new with various parameters [lasground and lasground_new]
2) test the outcomes by comparing it to known terrain to find out the optimal parameters for classifying this particular LiDAR point cloud for archaeological purposes.
3) extract the bare-earth of all tiles (using buffers!!!) with the best parameters [lasground or lasground_new]
4) create bare-earth terrain rasters (DTMs) and analyze the area [lasdem]
5) reclassify the airborne LiDAR data collected by the National Land Survey using various parameters to see whether it can become more suitable for revealing Sami cultural remains in a boreal forest landscape  [lasground or lasground_new]

References:
Jansson, J., Alexander, B. & Söderman, U. 2009. Laserskanning från flyg och fornlämningar i skog. Länsstyrelsen Dalarna (PDF).
Koivisto, S. & Laulamaa, V. 2012. Pistepilvessä – Metsien arkeologiset kohteet LiDAR-ilmalaserkeilausaineistoissa. Arkeologipäivät 2012 (PDF).
Risbøl, O., Bollandsås, O.M., Nesbakken, A., Ørka, H.O., Næsset, E., Gobakken, T. 2013. Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. Journal of Archaeological Science 40:4688–4700.

LASmoons: Muriel Lavy

Muriel Lavy (recipient of three LASmoons)
RED (Risk Evaluation Dashboard) project
ISE-Net s.r.l, Aosta, ITALY.

Background:
The Aosta Valley Region is a mountainous area in the heart of the Alps. This region is regularly affected by hazard natural phenomena connected with the terrain geomorphometry and the climate change: snow avalanche, rockfalls and landslide.
In July 2016 a research program, funded by the European Program for the Regional Development, aims to create a cloud dashboard for the monitoring, the control and the analysis of several parameters and data derived from advanced sensors: multiparametrical probes, aerial and oblique photogrammetry and laser scanning. This tool will help the territory management agencies to improve the risk mitigation and management system.

The RIEGL VZ-4000 scanning the Aosta Valley Region in Italy.

Goal:
This study aims to classify the point clouds derived from aerial imagery integrated with laser scanning data in order to generate accurate DTM, DSM and Digital Snow Models. The photogrammetry data set was acquired with a Nikon D810 camera from an helicopter survey. The aim of further analysis is to detect changes of natural dynamic phenomena that have occurred via volume analysis and mass balance evaluation.

Data:
+ The photogrammetry data set was acquired with an RGB camera (Nikon D810) with a focal length equivalent of 50 mm from a helicopter survey: 1060 JPG images
+ The laser scanner data set was acquired using a Terrestrial Laser Scanner (RIEGL VZ-4000) combined with a Leica GNSS device (GS25) to georeference the project. The TLS dataset was then used as base reference to properly align and georeference the photogrammetry point cloud.

LAStools processing:
1) check the reference system and the point cloud density [lasinfo, lasvalidate]
2) remove isolated noise points [lasnoise]
3) classify point into ground and non-ground [lasground]
4) classify point clouds into vegetation and other [lasclassify]
5) create DTM and DSM  [las2dem, lasgrid, blast2dem]
6) produce 3D visualizations to facilitate the communication and the interaction [lasview]