First Look with LAStools at LiDAR from Hovermap Drone by CSIRO

Last December we had a chance to visit the team of Dr. Stefan Hrabar at CSIRO in Pullenvale near Brisbane who work on a drone LiDAR system called Hovermap. This SLAM-based system is mainly developed for the purpose of autonomous flight and exploration of GPS-denied environments such as buildings, mines and tunnels. But as the SLAM algorithm continuously self-registers the scan lines it produces a LiDAR point cloud that in itself is a nice product. We started our visit with a short test flight around the on-site tower. You can download the LiDAR data and the drone trajectory of this little survey here:

The Hovermap system is based on the Velodyne Puck Lite (VLP-16) that is much cheaper and more light-weight than many other LiDAR systems. One interesting tidbit in the Hovermap setup is that the scanner is installed such that the entire Puck is constantly rotating as you can see in this video. But  the Velodyne Puck is also known to produce somewhat “fluffy” surfaces with a thickness of a few centimeters. In a previous blog post with data from the YellowScan Surveyor system (that is also based on the Puck) we used a “median ground” surface to deal with the “fluff”. In the following we will have a look at the LiDAR data produced by Hovermap and how to process it with LAStools.

LiDAR data of CSIRO tower acquired during test flight of Hovermap system.

As always we start with a lasinfo report that computes the average density ‘-cd’ and histograms for the intensity and the GPS time:

lasinfo -i CSIRO_Tower\results.laz ^
        -cd ^
        -histo intensity 16 -histo gps_time 2 ^
        -odir CSIRO_Tower\quality -odix _info -otxt

A few excerpts of the resulting lasinfo report that you can download here are below:

lasinfo (180409) report for 'CSIRO_Tower\results.laz'
 number of point records: 16668904
 number of points by return: 0 0 0 0 0
 scale factor x y z: 0.0001 0.0001 0.0001
 offset x y z: -5.919576153930379 22.785394470724583 9.535698734939086
 min x y z: -138.6437 -125.2552 -34.1510
 max x y z: 126.8046 170.8260 53.2224
WARNING: full resolution of min_x not compatible with x_offset and x_scale_factor: -138.64370561381907
WARNING: full resolution of min_y not compatible with y_offset and y_scale_factor: -125.25518631070418
WARNING: full resolution of min_z not compatible with z_offset and z_scale_factor: -34.150966206894068
WARNING: full resolution of max_x not compatible with x_offset and x_scale_factor: 126.80455330595831
WARNING: full resolution of max_y not compatible with y_offset and y_scale_factor: 170.82597525215334
WARNING: full resolution of max_z not compatible with z_offset and z_scale_factor: -34.150966206894068
 gps_time 121.288045 302.983110
WARNING: 2 points outside of header bounding box
covered area in square units/kilounits: 51576/0.05
point density: all returns 323.19 last only 318.40 (per square units)
 spacing: all returns 0.06 last only 0.06 (in units)
WARNING: for return 1 real number of points by return is 16424496 but header entry was not set.
WARNING: for return 2 real number of points by return is 244408 but header entry was not set.
real max z larger than header max z by 0.000035
real min z smaller than header min z by 0.000035

Most of these warnings have to do with poorly chosen offset values in the LAS header that have many decimal digits instead of being nice round numbers. The points are stored with sub-millimeter resolution (scale factors of 0.0001) which is unnecessarily precise for a UAV flying a Velodyne Puck where the overall system error can be expected to be on the order of a few centimeters. Also the histogram of return numbers in the LAS header was not populated. We can fix these issues with one call to las2las:

las2las -i CSIRO_Tower\results.laz ^
        -rescale 0.01 0.01 0.01 ^
        -auto_reoffset ^
        -odix _fixed -olaz

If you create another lasinfo report on the fixed file you will see that all the warnings have gone. The file size is now also only 102 MB instead of 142 MB because centimeter coordinate compress much better than sub-millimeter coordinates.

The average density of 318 last return per square meter reported by lasinfo is not that useful for a UAV survey because it does account for the highly varying distribution of LiDAR returns in the area surveyed. With lasgrid we can get a much more clear picture of that.

lasgrid -i CSIRO_Tower\results_fixed.laz ^
        -last_only ^
        -step 0.5 -use_bb -density ^
        -false -set_min_max 0 1500 ^
        -o CSIRO_Tower\quality\density_0_1500.png

LiDAR density: blue is close to zero and red is 1500 or more last returns / sqr mtr

The red dot in the point density indicated an area with over 1500 last returns per square meter. No surprise that this is the take-off and touch-down location of the copter drone. Naturally this spot is completely over-scanned compared to the rest of the area. We can remove these points with the help of the timestamps by cutting off the start and the end of the recording.

The total recording time including take-off, flight around the tower, and touch-down was around 180 seconds or 3 minutes as the lasinfo report tells us. Note that the recorded time stamps are neither “GPS Week Time” nor “Adjusted Standard GPS Time” but an internal system time. By visualizing the trajectory of the UAV with lasview while binning the timestamps into the intensity field we can easily determine what interval of timestamps describes the actual survey flight. First we convert the drone trajectory from the textual ASCII format to the LAZ format with txt2las:

txt2las -i CSIRO_Tower\results_traj.txt ^
        -skip 1 ^
        -parse txyz ^
        -set_classification 12 ^

lasview -i CSIRO_Tower\results_traj.laz ^
        -bin_gps_time_into_intensity 1

Binning timestamps into intensity allows visually determining start and end of survey.

Using lasview and pressing <i> while hovering over those points of the trajectory that appear to be the survey start and end we determine visually that the timestamps between 164 to 264 correspond to the actual survey flight over the area of interest with the take-off and touch-down maneuvers excluded. We use las2las to cut out the relevant part and re-run lasgrid:

las2las -i CSIRO_Tower\results_fixed.laz ^
        -keep_gps_time 164 264 ^
        -o CSIRO_Tower\results_survey.laz

lasgrid -i CSIRO_Tower\results_survey.laz ^
        -last_only ^
        -step 0.5 -use_bb -density ^
        -false -set_min_max 0 1500 ^
        -o CSIRO_Tower\quality\density_0_1500_survey.png

LiDAR density after removing take-off and touch-down maneuvers.

The other set of point we are less interested in are those occasional hits far from the scanner that sample the area too sparsely to be useful for anything. We use lastrack to reclassify points as noise (7) that exceed a x/y distance of 50 meters from the trajectory and then use lasgrid to create another density image without the points classified as noise..

lastrack -i CSIRO_Tower\results_survey.laz ^
         -track CSIRO_Tower\results_traj.laz ^
         -classify_xy_range_between 50 1000 7 ^
         -o CSIRO_Tower\results_xy50.laz

lasgrid -i CSIRO_Tower\results_xy50.laz ^
        -last_only -keep_class 0 ^
        -step 0.5 -use_bb -density ^
        -false -set_min_max 0 1500 ^
        -o CSIRO_Tower\quality\density_0_1500_xy50.png

LiDAR density after removing returns farther than 50 m from trajectory.

We process the remaining points using a typical tile-based processing pipeline. First we run lastile to create tiling of 200 meter by 200 meter tiles with 20 buffers while dropping the noise points::

lastile -i CSIRO_Tower\results_xy50.laz ^
        -drop_class 7 ^
        -tile_size 200 -buffer 20 -flag_as_withheld ^
        -odir CSIRO_Tower\tiles_raw -o eta.laz

Because of the high sampling we expect there to be quite a few duplicate point where all three coordinate x, y, and z are identical. We remove them with a call to lasduplicate:

lasduplicate -i CSIRO_Tower\tiles_raw\*.laz ^
             -unique_xyz ^
             -odir CSIRO_Tower\tiles_unique -olaz ^
             -cores 4

This removes between 12 to 25 thousand point from each tile. Then we use lasnoise to classify isolated points as noise:

lasnoise -i CSIRO_Tower\tiles_unique\*.laz ^
         -step_xy 0.5 -step_z 0.1 -isolated 5 ^
         -odir CSIRO_Tower\tiles_denoised_temp -olaz ^
         -cores 4

Aggressive parameters assure most noise point below ground are found.

This classifies between 13 to 23 thousand point from each tile into the noise classification code 7. We use rather aggressive settings to make sure we get most of the noise points that are below the terrain. Getting a correct ground classification in the next few steps is the main concern now even if this means that many points above the terrain on wires, towers, or vegetation will also get miss-classified as noise (at least temporarily). Next we use lasthin to classify a subset of points with classification code 8 on which we will then run the ground classification. We classify each point that is closest to the 5th percentile in elevation per 25 cm by 25 cm grid cell given there are at least 20 non-noise points in a cell. We then repeat this while increasing the cell size to 50 cm by 50 cm and 100 cm by 100 cm.

lasthin -i CSIRO_Tower\tiles_denoised_temp\*.laz ^
        -ignore_class 7 ^
        -step 0.25 -percentile 5 20 -classify_as 8 ^
        -odir CSIRO_Tower\tiles_thinned_025 -olaz ^
        -cores 4

lasthin -i CSIRO_Tower\tiles_thinned_025\*.laz ^
        -ignore_class 7 ^
        -step 0.50 -percentile 5 20 -classify_as 8 ^
        -odir CSIRO_Tower\tiles_thinned_050 -olaz ^
        -cores 4

lasthin -i CSIRO_Tower\tiles_thinned_025\*.laz ^
        -ignore_class 7 ^
        -step 1.00 -percentile 5 20 -classify_as 8 ^
        -odir CSIRO_Tower\tiles_thinned_100 -olaz ^
        -cores 4


Then we ground classify the points that were classified into the temporary classification code 8 in the previous step using lasground.

lasground -i CSIRO_Tower\tiles_thinned_100\*.laz ^
          -ignore_class 7 0 ^
          -town -ultra_fine ^
          -odir CSIRO_Tower\tiles_ground -olaz ^
          -cores 4

The resulting ground points are a lower envelope of the “fluffy” sampled surfaces produced by the Velodyne Puck scanner. We use lasheight to thicken the ground by moving all points between 1 cm below and 6 cm above the TIN of these “low ground” points to a temporary classification code 6 representing a “thick ground”. We also undo the overly aggressive noise classifications above the ground by setting all higher points back to classification code 1 (unclassified).

lasheight -i CSIRO_Tower\tiles_ground\*.laz ^
          -classify_between -0.01 0.06 6 ^
          -classify_above 0.06 1 ^
          -odir CSIRO_Tower\tiles_ground_thick -olaz ^
          -cores 4

Profile view for 25 centimeter wide strip of open terrain. Top: Green points are low ground. Orange points are thickened ground with 5 cm drop lines. Middle: Brown points are median ground computed from thick ground. Bottom: Comparing low ground points (in green) with median ground points (in brown).

From the “thick ground” we then compute a “median ground” using lasthin in a similar fashion as we used it before. A profile view for a 25 centimeter wide strip of open terrain illustrates the workflow of going from “low ground” via “thick ground” to “median ground” and shows the slight difference in elevation between the two.

lasthin -i CSIRO_Tower\tiles_ground_thick\*.laz ^
        -ignore_class 0 1 7 ^
        -step 0.25 -percentile 50 10 -classify_as 2 ^
        -odir CSIRO_Tower\tiles_ground_median_025 -olaz ^
        -cores 4

lasthin -i CSIRO_Tower\tiles_ground_median_025\*.laz ^
        -ignore_class 0 1 7 ^
        -step 0.50 -percentile 50 10 -classify_as 2 ^
        -odir CSIRO_Tower\tiles_ground_median_050 -olaz ^
        -cores 4

lasthin -i CSIRO_Tower\tiles_ground_median_050\*.laz ^
        -ignore_class 0 1 7 ^
        -step 1.00 -percentile 50 10 -classify_as 2 ^
        -odir CSIRO_Tower\tiles_ground_median_100 -olaz ^
        -cores 4

Then we use lasnoise once more with more conservative settings to remove the noise points that are sprinkled around the scene.

lasnoise -i CSIRO_Tower\tiles_ground_median_100\*.laz ^
         -step_xy 1.0 -step_z 1.0 -isolated 5 ^
         -odir CSIRO_Tower\tiles_denoised -olaz ^
         -cores 4

While we classify the scene into building roofs, vegetation, and everything else with lasclassify we also move all (unused) classifications to classification code 1 (unclassified). You may play with the parameters of lasclassify (see README) to achieve better a building classification. However, those buildings the laser can peek into (either via a window or because they are gazebo-like structures) will not be classified correctly. unless you remove the points that are under the roof somehow.

lasclassify -i CSIRO_Tower\tiles_denoised\*.laz ^
            -ignore_class 7 ^
            -change_classification_from_to 0 1 ^
            -change_classification_from_to 6 1 ^
            -step 1 ^
            -odir CSIRO_Tower\tiles_classified -olaz ^
            -cores 4

A glimpse at the final classification result is below. A hillshaded DTM and a strip of classified points. Of course the tower was miss-classified as vegetation given that it looks just like a tree to the logic used in lasclassify.

The hillshaded DTM with a strip of classified points.

Finally we remove the tile buffers (that were really important for tile-based processing) with lastile:

lastile -i CSIRO_Tower\tiles_classified\*.laz ^
        -remove_buffer ^
        -odir CSIRO_Tower\tiles_final -olaz ^
        -cores 4

And publish the LiDAR point cloud as version 1.6 of Potree using laspublish:

laspublish -i CSIRO_Tower\tiles_final\*.laz ^
           -i CSIRO_Tower\results_traj.laz ^
           -only_3D -elevation -overwrite -potree16 ^
           -title "CSIRO Tower" ^
           -description "HoverMap test flight, 18 Dec 2017" ^
           -odir CSIRO_Tower\tiles_portal -o portal.html -olaz

Note that we also added the trajectory of the drone because it looks nice and gives a nice illustration of how the UAV was scanning the scene.

Via Potree we can publish and explore the final point cloud using any modern Web browser.

We would like to thank the entire team around Dr. Stefan Hrabar for taking time out of their busy schedules just a few days before Christmas.

Removing Low Noise from RIEGL’s VUX-1 UAV LiDAR flown in the Philippines

In this tutorial we are removing some “tricky” low noise from LiDAR point clouds in order to produce a high-resolution Digital Terrain Model (DTM). The data was flown above a tropical beach and mangrove area in the Philippines using a VUX-1 UAV based system from RIEGL mounted on a helicopter. The survey was done as a test flight by AB Surveying who have the capacity to fly such missions in the Philippines and who have allowed us to share this data with you for educational purposes. You can download the data (1 GB) here. It covers a popular twin beach knows as “Nacpan” near El Nido in Palawan (that we happen to have visited in 2014).

A typical beach fringed by coconut palms in Palawan, Philippines.

We start our usual quality check with a run of lasinfo. We add the ‘-cd’ switch to compute an average point density and the ‘-histo gps_time 1’ switch to produce a 1 second histogram for the GPS time stamps.

lasinfo -i lalutaya.laz ^
        -cd ^
        -histo gps_time 1 ^
        -odix _info -otxt

You can download the resulting lasinfo report here. It tells us that there are 118,740,310 points of type 3 (with RGB colors) with an average density of 57 last returns per square meter. The point coordinates are in the “PRS92 / Philippines 1” projection with EPSG code 3121 that is based on the “Clarke 1866” ellipsoid.

Datum Transform

We prefer to work in an UTM projection based on the “WGS 1984” ellipsoid, so we will first perform a datum transform based on the seven parameter Helmert transformation – a capacity that was recently added to LAStools. For this we first need a transform to get to geocentric or Earth-Centered Earth-Fixed (ECEF) coordinates on the current “Clarke 1866” ellipsoid, then we apply the Helmert transformation that operates on geocentric coordinates and whose parameters are listed in the TOWGS84 string of EPSG code 3121 to get to geocentric or ECEF coordinates on the “WGS 1984” ellipsoid. Finally we can convert the coordinates to the respective UTM zone. These three calls to las2las accomplish this.

las2las -i lalutaya.laz ^
        -remove_all_vlrs ^
        -epsg 3121 ^
        -target_ecef ^
        -odix _ecef_clark1866 -olaz

las2las -i lalutaya_ecef_clark1866.laz ^
        -transform_helmert -127.62,-67.24,-47.04,-3.068,4.903,1.578,-1.06 ^
        -wgs84 -ecef ^
        -ocut 10 -odix _wgs84 -olaz
las2las -i lalutaya_ecef_wgs84.laz ^
        -target_utm auto ^
        -ocut 11 -odix _utm -olaz

In these steps we implicitly reduced the resolution that each coordinate was stored with from quarter-millimeters (i.e. scale factors of 0.00025) to the default of centimeters (i.e. scale factors of 0.01) which should be sufficient for subsequent vegetation analysis. The LAZ files also compress better when coordinates a lower resolution so that the ‘lalutaya_utm.laz’ file is over 200 MB smaller than the original ‘lalutaya.laz’ file. The quantization error this introduces is probably still below the overall scanning error of this helicopter survey.

Flightline Recovery

Playing back the file visually with lasview suggests that it contains more than one flightline. Unfortunately the point source ID field of the file is not properly populated with flightline information. However, when scrutinizing the GPS time stamp histogram in the lasinfo report we can see an occasional gap. We highlight two of these gaps in red between GPS second 540226 and 540272 and GPS second 540497 and 540556 in this excerpt from the lasinfo report:

gps_time histogram with bin size 1
 bin 540224 has 125768
 bin 540225 has 116372
 bin 540226 has 2707
 bin 540272 has 159429
 bin 540273 has 272049
 bin 540274 has 280237
 bin 540495 has 187103
 bin 540496 has 180421
 bin 540497 has 126835
 bin 540556 has 228503
 bin 540557 has 275025
 bin 540558 has 273861

We can use lasplit to recover the original flightlines based on gaps in the continuity of GPS time stamps that are bigger than 10 seconds:

lassplit -i lalutaya_utm.laz ^
         -recover_flightlines_interval 10 ^
         -odir strips_raw -o lalutaya.laz

This operation splits the points into 11 separate flightlines. The points within each flightline are stored in the order that the vendor software – which was RiPROCESS 1.7.2 from RIEGL according to the lasinfo report – had written them to file. We can use lassort to bring them back into the order they were acquired in by sorting first on the GPS time stamp and then on the return number field:

lassort -i strips_raw\*.laz ^
        -gps_time -return_number ^
        -odir strips_sorted -olaz ^
        -cores 4

Now we turn the sorted flightlines into tiles (with buffers !!!) for further processing. We also erase the current classification of the data into ground (2) and medium vegetation (4) as a quick visual inspection with lasview immediately shows that those are not correct:

lastile -i strips_sorted\*.laz ^
        -files_are_flightlines ^
        -set_classification 0 ^
        -tile_size 250 -buffer 30 -flag_as_withheld ^
        -odir tiles_raw -o lalu.laz

Quality Checking

Next comes the standard check of flightline overlap and alignment check with lasoverlap. Once more it become clear why it is so important to have flightline information. Without we may have missed what we are about to notice. We create false color images load into Google Earth to visually assess the situation. We map all absolute differences between flightlines below 5 cm to white and all absolute differences above 30 cm to saturated red (positive) or blue (negative) with a gradual shading from white to red or blue for any differences in between. We also create an overview KML file that lets us quickly see in which tile we can find the points for a particular area of interest with lasboundary.

lasoverlap -i tiles_raw\*.laz ^
           -step 1 -min_diff 0.05 -max_diff 0.30 ^
           -odir quality -opng ^
           -cores 4

lasboundary -i tiles_raw\*.laz ^
            -use_tile_bb -overview -labels ^
            -o quality\overview.kml

The resulting visualizations show (a) that our datum transform to the WGS84 ellipsoid worked because the imagery aligns nicely with Google Earth and (b) that there are several issues in the data that require further scrutiny.

In general the data seems well aligned (most open areas are white) but there are blue and red lines crossing the survey area. With lasview have a closer look at the visible blue lines running along the beach in tile ‘lalu_765000_1252750.laz’ by repeatedly pressing ‘x’ to select a different subset and ‘x’ again to view this subset up close while pressing ‘c’ to color it differently:

lasview -i tiles_raw\lalu_765000_1252750.laz

These lines of erroneous points do not only happen along the beach but also in the middle of and below the vegetation as can be seen below:

Our initial hope was to use the higher than usual intensity of these erroneous points to reclassify them to some classification code that we would them exclude from further processing. Visually we found that a reasonable cut-off value for this tile would be an intensity above 35000:

lasview -i tiles_raw\lalu_765000_1252750.laz ^
        -keep_intensity_above 35000 ^
        -filtered_transform ^
        -set_classification 23

However, while this method seems successful on the tile shown above it fails miserably on others such as ‘lalu_764250_1251500.laz’ where large parts of the beach are very reflective and result in high intensity returns to to the dry white sand:

lasview -i tiles_raw\lalu_764250_1251500.laz ^
        -keep_intensity_above 35000 ^
        -filtered_transform ^
        -set_classification 23

Low Noise Removal

In the following we describe a workflow that can remove the erroneous points below the ground so that we can at least construct a high-quality DTM from the data. This will not, however, remove the erroneous points above the ground so a subsequent vegetation analysis would still be affected. Our approach is based on two obervations (a) the erroneous points affect only a relatively small area and (b) different flightlines have their erroneous points in different areas. The idea is to compute a set of coarser ground points separately for each flightline and – when combining them in the end – to pick higher ground points over lower ones. The combined points should then define a surface that is above the erroneous below-ground points so that we can mark them with lasheight as not to be used for the actual ground classification done thereafter.

The new huge_las_file_extract_ground_points_only.bat example batch script that you can download here does all the work needed to compute a set of coarser ground points for each flightline. Simply edit the file such that the LAStools variable points to your LAStools\bin folder and rename it to end with the *.bat extension. Then run:

huge_las_file_extract_ground_points_only strips_sorted\lalutaya_0000001.laz strips_ground_only\lalutaya_0000001.laz
huge_las_file_extract_ground_points_only strips_sorted\lalutaya_0000002.laz strips_ground_only\lalutaya_0000001.laz
huge_las_file_extract_ground_points_only strips_sorted\lalutaya_0000003.laz strips_ground_only\lalutaya_0000001.laz
huge_las_file_extract_ground_points_only strips_sorted\lalutaya_0000009.laz strips_ground_only\lalutaya_0000009.laz
huge_las_file_extract_ground_points_only strips_sorted\lalutaya_0000010.laz strips_ground_only\lalutaya_0000010.laz
huge_las_file_extract_ground_points_only strips_sorted\lalutaya_0000011.laz strips_ground_only\lalutaya_0000011.laz

The details on how this batch script works – a pretty standard tile-based multi-core processing workflow – are given as comments in this batch script. Now we have a set of individual ground points computed separately for each flightline and some will include erroneous points below the ground that the lasground algorithm by its very nature is likely to latch on to as you can see here:

The trick is now to utilize the redundancy of multiple scans per area and – when combining flightlines – to pick higher rather than lower ground points in overlap areas by using the ground point closest to the 75th elevation percentile per 2 meter by 2 meter area with at least 3 or more points with lasthin:

lasthin -i strips_ground_only\*.laz -merged ^
        -step 2 -percentile 75 3 ^
        -o lalutaya_ground_only_2m_75_3.laz

There are still some non-ground points in the result as ground-classifying of flightlines individually often results in vegetation returns being included in sparse areas along the edges of the flight lines but we can easily get rid of those:

lasground_new -i lalutaya__ground_only_2m_75_3.laz ^
              -town -hyper_fine ^
              -odix _g -olaz

We sort the remaining ground points into a space-filling curve order with lassort and spatially index them with lasindex so they can be efficiently accessed by lasheight in the next step.

lassort -i lalutaya__ground_only_2m_75_3_g.laz ^
        -keep_class 2 ^
        -o lalutaya_ground.laz

lasindex -i lalutaya_ground.laz

Finally we have the means to robustly remove the erroneous points below the ground from all tiles. We use lasheight with the ground points we’ve just so painstakingly computed to classify all points 20 cm or more below the ground surface they define into classification code 23. Later we simply can ignore this classification code during processing:

lasheight -i tiles_raw\*.laz ^
          -ground_points lalutaya_ground.laz ^
          -do_not_store_in_user_data ^
          -classify_below -0.2 23 ^
          -odir tiles_cleaned -olaz ^
          -cores 4

Rather than trying to ground classify all remaining points we run lasground on a thinned subset of all points. For this we mark the lowest point in every 20 cm by 20 cm grid cell with some temporary classification code such as 6.

lasthin -i tiles_cleaned\*.laz ^
        -ignore_class 23 ^
        -step 0.20 -lowest -classify_as 6 ^
        -odir tiles_thinned -olaz ^
        -cores 4

Finally we can run lasground to compute the ground classification considering all points with classification code 6 by ignoring all points with classification codes 23 and 0.

lasground_new -i tiles_thinned\*.laz ^
              -ignore_class 23 0 ^
              -city -hyper_fine ^
              -odir tiles_ground_new -olaz ^
              -cores 4

And finally we can create a DTM with a resolution of 25 cm using las2dem and the result is truly beautiful:

las2dem -i tiles_ground_new\*.laz ^
        -keep_class 2 ^
        -step 0.25 -use_tile_bb ^
        -odir tiles_dtm_25cm -obil ^
        -cores 4

We have to admit that a few bumps are left (see mouse cursor below) but adjusting the parameters presented here is left as an exercise to the reader.

We would again like to acknowledge AB Surveying whose generosity has made this blog article possible. They have the capacity to fly such missions in the Philippines and who have allowed us to share this data with you for educational purposes.

LASmoons: Huaibo Mu

Huaibo Mu (recipient of three LASmoons)
Environmental Mapping, Department of Geography
University College London (UCL), UK

This study is a part of the EU-funded Metrology for Earth Observation and Climate project (MetEOC-2). It aims to combine terrestrial and airborne LiDAR data to estimate biomass and allometry for woodland trees in the UK. Airborne LiDAR can capture large amounts of data over large areas, while terrestrial LiDAR can provide much more details of high quality in specific areas. The biomass and allometry for individual specific tree species in 1 ha of Wytham Woods located about 5km north west of the University of Oxford, UK are estimated by combining both airborne and terrestrial LiDAR. Then the bias will be evaluated when estimation are applied on different levels: terrestrial LiDAR level, tree level, and area level. The goal are better insights and a controllable error range in the bias of biomass and allometry estimates for woodland trees based on airborne LiDAR.

The study aims to find the suitable parameters of allometric equations for different specific species and establish the relationship between the tree height and stem diameter and crown diameter to be able to estimate the above ground biomass using airborne LiDAR. The biomass estimates under different levels are then compared to evaluate the bias and for the total 6ha of Wytham Woods for calibration and validation. Finally the results are to be applied to other woodlands in the UK. The LiDAR processing tasks for which LAStools are used mainly center around the creation of suitable a Canopy Height Model (CHM) from the airborne LiDAR.

+ Airborne LiDAR data produced by Professor David Coomes (University of Cambridge) with Airborne Research and Survey Facility (ARSF) Project code of RG13_08 in June 2014. The average point density is about 5.886 per m^2.
+ Terrestrial LiDAR data collected by UCL’s team leader by Dr. Mat Disney and Dr. Kim Calders in order to develop very detailed 3D models of the trees.
+ Fieldwork from the project “Initial Results from Establishment of a Long-term Broadleaf Monitoring Plot at Wytham Woods, Oxford, UK” by Butt et al. (2009).

LAStools processing:
1) check LiDAR quality as described in these videos and articles [lasinfo, lasvalidate, lasoverlap, lasgrid, las2dem]
2) classify into ground and non-ground points using tile-based processing  [lastile, lasground]
3) generate a Digital Terrain Model (DTM) [las2dem]
4) compute height of points and delete points higher than maximum tree height obtained from terrestrial LiDAR [lasheight]
5) convert points into disks with 10 cm diameter to conservatively account for laser beam width [lasthin]
6) generate spike-free Digital Surface Model (DSM) based on algorithm by Khosravipour et al. (2016) [las2dem]
7) create Canopy Height Model (CHM) by subtracting DTM from spike-free DSM [lasheight].

Butt, N., Campbell, G., Malhi, Y., Morecroft, M., Fenn, K., & Thomas, M. (2009). Initial results from establishment of a long-term broadleaf monitoring plot at Wytham Woods, Oxford, UK. University Oxford, Oxford, UK, Rep.
Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T.J., Hussin, Y.A., (2014). Generating pit-free Canopy Height Models from Airborne LiDAR. PE&RS = Photogrammetric Engineering and Remote Sensing 80, 863-872.
Khosravipour, A., Skidmore, A.K., Isenburg, M. and Wang, T.J. (2015) Development of an algorithm to generate pit-free Digital Surface Models from LiDAR, Proceedings of SilviLaser 2015, pp. 247-249, September 2015.
Khosravipour, A., Skidmore, A.K., Isenburg, M (2016) Generating spike-free Digital Surface Models using raw LiDAR point clouds: a new approach for forestry applications, (journal manuscript under review).

LASmoons: Marzena Wicht

Marzena Wicht (recipient of three LASmoons)
Department of Photogrammetry, Remote Sensing and GIS
Warsaw University of Technology, Poland.

More than half of human population (Heilig 2012) suffers from many negative effects of living in cities: increased air pollution, limited access to the green areas, Urban Heat Island (UHI) and many more. To mitigate some of these effects, many ideas came up over the years: reducing the surface albedo, the idea of the Garden City, green belts, and so on. Increasing horizontal wind speed might actually improve both, the air pollution dispersion and the thermal comfort in urban areas (Gál & Unger 2009). Areas of low roughness promote air flow – discharging the city from warm, polluted air and supplying it with cool and fresh air – if they share specific parameters, are connected and penetrate the inner city with a country breeze. That is why mapping low roughness urban areas is important in better understanding urban climate.

The goal of this study is to derive buildings (outlines and height) and high vegetation using LAStools and to use that data in mapping urban ventilation corridors for our case study area in Warsaw. There are many ways to map these; however using ALS data has certain advantages (Suder& Szymanowski 2014) in this case: DSMs can be easily derived, tree canopy (incl. height) can be joined to the analysis and buildings can be easily extracted. The outputs are then used as a basis for morphological analysis, like calculating frontal area index. LAStools has the considerable advantage of processing large quantities of data (~500 GB) efficiently.

Frontal area index calculation based on 3D building database

+ LiDAR provided by Central Documentation Center of Geodesy and Cartography
+ average pulse density 12 p/m^2
+ covers 517 km^2 (whole Warsaw)

LAStools processing:
1) quality checking of the data as described in several videos and blog posts [lasinfo, lasvalidate, lasoverlap, lasgrid, lasduplicate, lasreturnlas2dem]
2) reorganize data into sufficiently small tiles with buffers to avoid edge artifacts [lastile]
3) classify point clouds into vegetation and buildings [lasground, lasclassify]
4) normalize LiDAR heights [lasheight]
5) create triangulated, rasterized derivatives: DSM / DTM / nDSM / CHM [las2dem, blast2dem]
6) compute height-based metrics (e.g. ‘-avg’, ‘-std’, and ‘-p 50’) [lascanopy]
7) generate subsets during the workflow [lasclip]
8) generate building footprints [lasboundary]

Heilig, G. K. (2012). World urbanization prospects: the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York.
Gal, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206.
Suder, A., & Szymanowski, M. (2014). Determination of ventilation channels in urban area: A case study of Wroclaw (Poland). Pure and Applied Geophysics, 171(6), 965-975.

LASmoons: Gudrun Norstedt

Gudrun Norstedt (recipient of three LASmoons)
Forest History, Department of Forest Ecology and Management
Swedish University of Agricultural Sciences, Umeå, Sweden

Until the end of the 17th century, the vast boreal forests of the interior of northern Sweden were exclusively populated by the indigenous Sami. When settlers of Swedish and Finnish ethnicity started to move into the area, colonization was fast. Although there is still a prospering reindeer herding Sami culture in northern Sweden, the old Sami culture that dominated the boreal forest for centuries or even millenia is to a large extent forgotten.
Since each forest Sami family formerly had a number of seasonal settlements, the density of settlements must have been high. However, only very few remains are known today. In the field, old Sami settlements can be recognized through the presence of for example stone hearths, storage caches, pits for roasting pine bark, foundations of certain types of huts, reindeer pens, and fences. Researchers of the Forest History section of the Department of Forest Ecology and Management have long been surveying such remains on foot. This, however, is extremely time consuming and can only be done in limited areas. Also, the use of aerial photographs is usually difficult due to dense vegetation. Data from airborne laser scanning should be the best way to find remains of the old forest Sami culture. Previous research has shown the possibilities of using airborne laser scanning data for detecting cultural remains in the boreal forest (Jansson et al., 2009; Koivisto & Laulamaa, 2012; Risbøl et al., 2013), but no studies have aimed at detecting remains of the forest Sami culture. I want to test the possibilities of ALS in this respect.

DTM from the Krycklan catchment, showing a row of hunting pits and (larger) a tar pit.

The goal of my study is to test the potential of using LiDAR data for detecting cultural and archaeological remains on the ground in a forest area where Sami have been known to dwell during historical times. Since the whole of Sweden is currently being scanned by the National Land Survey, this data will be included. However, the average point density of the national data is only 0,5–1 pulses/m^2. Therefore, the study will be done in an established research area, the Krycklan catchment, where a denser scanning was performed in 2015. The Krycklan data set lacks ground point classification, so I will have to perform such a classification before I can proceed to the creation of a DTM. Having tested various kind of software, I have found that LAStools seems to be the most efficient way to do the job. This, in turn, has made me aware of the importance of choosing the right methods and parameters for doing a classification that is suitable for archaeological purposes.

The data was acquired with a multi-spectral airborne LiDAR sensor, the Optech Titan, and a Micro IRS IMU, operated on an aircraft flying at a height of about 1000 m and positioning was post-processed with the TerraPos software for higher accuracy.
The average pulse density is 20 pulse/m^2.
+ About 7 000 hectares were covered by the scanning. The data is stored in 489 tiles.

LAStools processing:
1) run a series of classifications of a few selected tiles with both lasground and lasground_new with various parameters [lasground and lasground_new]
2) test the outcomes by comparing it to known terrain to find out the optimal parameters for classifying this particular LiDAR point cloud for archaeological purposes.
3) extract the bare-earth of all tiles (using buffers!!!) with the best parameters [lasground or lasground_new]
4) create bare-earth terrain rasters (DTMs) and analyze the area [lasdem]
5) reclassify the airborne LiDAR data collected by the National Land Survey using various parameters to see whether it can become more suitable for revealing Sami cultural remains in a boreal forest landscape  [lasground or lasground_new]

Jansson, J., Alexander, B. & Söderman, U. 2009. Laserskanning från flyg och fornlämningar i skog. Länsstyrelsen Dalarna (PDF).
Koivisto, S. & Laulamaa, V. 2012. Pistepilvessä – Metsien arkeologiset kohteet LiDAR-ilmalaserkeilausaineistoissa. Arkeologipäivät 2012 (PDF).
Risbøl, O., Bollandsås, O.M., Nesbakken, A., Ørka, H.O., Næsset, E., Gobakken, T. 2013. Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. Journal of Archaeological Science 40:4688–4700.

LASmoons: Muriel Lavy

Muriel Lavy (recipient of three LASmoons)
RED (Risk Evaluation Dashboard) project
ISE-Net s.r.l, Aosta, ITALY.

The Aosta Valley Region is a mountainous area in the heart of the Alps. This region is regularly affected by hazard natural phenomena connected with the terrain geomorphometry and the climate change: snow avalanche, rockfalls and landslide.
In July 2016 a research program, funded by the European Program for the Regional Development, aims to create a cloud dashboard for the monitoring, the control and the analysis of several parameters and data derived from advanced sensors: multiparametrical probes, aerial and oblique photogrammetry and laser scanning. This tool will help the territory management agencies to improve the risk mitigation and management system.

The RIEGL VZ-4000 scanning the Aosta Valley Region in Italy.

This study aims to classify the point clouds derived from aerial imagery integrated with laser scanning data in order to generate accurate DTM, DSM and Digital Snow Models. The photogrammetry data set was acquired with a Nikon D810 camera from an helicopter survey. The aim of further analysis is to detect changes of natural dynamic phenomena that have occurred via volume analysis and mass balance evaluation.

+ The photogrammetry data set was acquired with an RGB camera (Nikon D810) with a focal length equivalent of 50 mm from a helicopter survey: 1060 JPG images
+ The laser scanner data set was acquired using a Terrestrial Laser Scanner (RIEGL VZ-4000) combined with a Leica GNSS device (GS25) to georeference the project. The TLS dataset was then used as base reference to properly align and georeference the photogrammetry point cloud.

LAStools processing:
1) check the reference system and the point cloud density [lasinfo, lasvalidate]
2) remove isolated noise points [lasnoise]
3) classify point into ground and non-ground [lasground]
4) classify point clouds into vegetation and other [lasclassify]
5) create DTM and DSM  [las2dem, lasgrid, blast2dem]
6) produce 3D visualizations to facilitate the communication and the interaction [lasview]

Plots to Stands: Producing LiDAR Vegetation Metrics for Imputation Calculations

Some professionals in remote sensing find LAStools a useful tool to extract statistical metrics from LiDAR that are used to make estimations about a larger area of land from a small set of sample plots. Common applications are prediction of the timber volume or the above-ground biomass for entire forests based on a number of representative plots where exact measurements were obtained with field work. The same technique can also be used to make estimations about animal habitat or coconut yield or to classify the type of vegetation that covers the land. In this tutorial we describe the typical workflow for computing common metrics for smaller plots and larger areas using LAStools.

Download these six LiDAR tiles (1, 2, 3, 4, 5, 6) from a Eucalyptus plantation in Brazil to follow along the step by step instructions of this tutorial. This data is courtesy of Suzano Pulp and Paper. Please also download the two shapefiles that delineate the plots where field measurements were taken and the stands for which predictions are to be made. You should download version 170327 (or higher) of LAStools due to some recent bug fixes.

Quality Checking

Before processing newly received LiDAR data we always perform a quality check first. This ranges from visual inspection with lasview, to printing textual content reports and attribute histograms with lasinfo, to flight-line alignment checks with lasoverlap, pulse density and pulse spacing checks with lasgrid and las2dem, and completeness-of-returns check with lassort followed by lasreturn.

lasinfo -i tiles_raw\CODL0003-C0006.laz ^
        -odir quality -odix _info -otxt

The lasinfo report tells us that there is no projection information. However, we remember that this Brazilian data was in the common SIRGAS 2000 projection and try for a few likely UTM zones whether the hillshaded DSM produced by las2dem falls onto the right spot in Google Earth.

las2dem -i tiles_raw\CODL0003-C0006.laz ^
        -keep_first -thin_with_grid 1 ^
        -hillshade -epsg 31983 ^
        -o epsg_check.png

Hillshaded DSM and Google Earth imagery align for EPSG code 31983

The lasinfo report also tells us that the xyz coordinates are stored with millimeter resolution which is a bit of an overkill. For higher and faster LASzip compression we will later lower this to a more appropriate centimeter resolution. It further tells us that the returns are stored using point type 0 and that is a bit unfortunate. This (older) point type does not have a GPS time stamp so that some quality checks (e.g. “completeness of returns” with lasreturn) and operations (e.g. “resorting of returns into acquisition order” with lassort) will not be possible. Fortunately the min-max range of the ‘point source ID’ suggests that this point attribute is correctly populated with flightline numbers so that we can do a check for overlap and alignment of the different flightlines that contribute to the LiDAR in each tile.

lasoverlap -i tiles_raw\*.laz ^
           -min_diff 0.2 -max_diff 0.4 ^
           -epsg 31983 ^
           -odir quality -opng ^
           -cores 3

We run lasoverlap to visualize the amount of overlap between flightlines and the vertical differences between them. The produced images (see below) color code the number of flightlines and the maximum vertical difference between any two flightlines as seen below. Most of the area is cyan (2 flightlines) except in the bottom left where the pilot was sloppy and left some gaps in the yellow seams (3 flightlines) so that some spots are only blue (1 flightline). We also see that two tiles in the upper left are partly covered by a diagonal flightline. We will drop that flightline later to create a more uniform density.across the tiles. The mostly blue areas in the difference are mostly aligned with features in the landscape and less with the flightline pattern. Closer inspection shows that these vertical difference occur mainly in the dense old growth forests with species of different heights that are much harder to penetrate by the laser than the uniform and short-lived Eucalyptus plantation that is more of a “dead forest” with little undergrowth or animal habitat.

Interesting observation: The vertical difference of the lowest return from different flightlines computed per 2 meter by 2 meter grid cell could maybe be used a new forestry metric to help distinguish mono cultures from natural forests.

lasgrid -i tiles_raw\*.laz ^
        -keep_last ^
        -step 2 -point_density ^
        -false -set_min_max 10 20 ^
        -epsg 31983 ^
        -odir quality -odix _d_2m_10_20 -opng ^
        -cores 3

lasgrid -i tiles_raw\*.laz ^
        -keep_last ^
        -step 5 -point_density ^
        -false -set_min_max 10 20 ^
        -epsg 31983 ^
        -odir quality -odix _d_5m_10_20 -opng ^
        -cores 3

We run lasgrid to visualize the pulse density per 2 by 2 meter cell and per 5 by 5 meter cell. The produced images (see below) color code the number of last return per square meter. The impact of the tall Eucalyptus trees on the density per cell computation is evident for the smaller 2 meter cell size in form of a noisy blue/red diagonal in the top right as well as a noisy blue/red area in the bottom left. Both of those turn to a more consistent yellow for the density per cell computation with larger 5 meter cells. Immediately evident is the higher density (red) for those parts or the two tiles in the upper left that are covered by the additional diagonal flightline. The blueish area left to the center of the image suggests a consistently lower pulse density whose cause remains to be investigated: Lower reflectivity? Missing last returns? Cloud cover?

The lasinfo report suggests that the tiles are already classified. We could either use the ground classification provided by the vendor or re-classify the data ourselves (using lastilelasnoise, and lasground). We check the quality of the ground classification by visually inspecting a hillshaded DTM created with las2dem from the ground returns. We buffer the tiles on-the-fly for a seamless hillshade without artifacts along tile boundaries by adding ‘-buffered 25’ and ‘-use_orig_bb’ to the command-line. To speed up reading the 25 meter buffers from neighboring tiles we first create a spatial indexing with lasindex.

lasindex -i tiles_raw\*.laz ^
         -cores 3

las2dem -i tiles_raw\*.laz ^
        -buffered 25 ^
        -keep_class 2 -thin_with_grid 0.5 ^
        -use_orig_bb ^
        -hillshade -epsg 31983 ^
        -odir quality -odix _dtm -opng ^
        -cores 3

hillshaded DTM tiles generated with las2dem and on-the-fly buffering

The resulting hillshaded DTM shows a few minor issues in the ground classification but also a big bump (above the mouse cursor). Closer inspection of this area (you can cut it from the larger tile using the command-line below) shows that there is a group of miss-classified points about 1200 meters below the terrain. Hence, we will start from scratch to prepare the data for the extraction of forestry metrics.

las2las -i tiles_raw\CODL0004-C0006.laz ^
        -inside_tile 207900 7358350 100 ^
        -o bump.laz

lasview -i bump.laz

bump in hillshaded DTM caused by miss-classified low noise

Data Preparation

Using lastile we first tile the data into smaller 500 meter by 500 meter tiles with 25 meter buffer while flagging all points in the buffer as ‘withheld’. In the same step we lower the resolution to centimeter and put nicer a coordinate offset in the LAS header. We also remove the existing classification and classify all points that are much lower than the target terrain as class 7 (aka noise). We also add CRS information and give each tile the base name ‘suzana.laz’.

lastile -i tiles_raw\*.laz ^
        -rescale 0.01 0.01 0.01 ^
        -auto_reoffset ^
        -set_classification 0 ^
        -classify_z_below_as 500.0 7 ^
        -tile_size 500 ^
        -buffer 25 -flag_as_withheld ^
        -epsg 31983 ^
        -odir tiles_buffered -o suzana.laz

With lasnoise we mark the many isolated points that are high above or below the terrain as class 7 (aka noise). Using two tiles we played around with the ‘step’ parameters until we find good parameter settings. See the README of lasnoise for the exact meaning and the choice of parameters for noise classification. We look at one of the resulting tiles with lasview.

lasnoise -i tiles_buffered\*.laz ^
         -step_xy 4 -step_z 2 ^
         -odir tiles_denoised -olaz ^
         -cores 3

lasview -i tiles_denoised\suzana_206000_7357000.laz ^
        -color_by_classification ^
        -win 1024 192

noise points shown in pink: all points (top), only noise points (bottom)

Next we use lasground to classify the last returns into ground (2) and non-ground (1). It is important to ignore the noise points with classification 7 to avoid the kind of bump we saw in the vendor-delivered classification. We again check the quality of the computed ground classification by producing a hillshaded DTM with las2dem. Here the las2dem command-line is sightly different as instead of buffering on-the-fly we use the buffers stored with each tile.

lasground -i tiles_denoised\*.laz ^
          -ignore_class 7 ^
          -nature -extra_fine ^
          -odir tiles_ground -olaz ^
          -cores 3

las2dem -i tiles_ground\*.laz ^
        -keep_class 2 -thin_with_grid 0.5 ^
        -hillshade ^
        -use_tile_bb ^
        -odir quality -odix _dtm_new -opng ^
        -cores 3

Finally, with lasheight we compute how high each return is above the triangulated surface of all ground returns and store this height value in place of the elevation value into the z coordinate using the ‘-replace_z’ switch. This height-normalizes the LiDAR in the sense that all ground returns are set to an elevation of 0 while all other returns get an elevation relative to the ground. The result are height-normalized LiDAR tiles that are ready for producing the desired forestry metrics.

lasheight -i tiles_ground\*.laz ^
          -replace_z ^
          -odir tiles_normalized -olaz ^
          -cores 3
Metric Production

The tool for computing the metrics for the entire area as well as for the individual field plots is lascanopy. Which metrics are well suited for your particular imputation calculation is your job to determine. Maybe first compute a large number of them and then eliminate the redundant ones. Do not use any point from the tile buffers for these calculations. We had flagged them as ‘withheld’ during the lastile operation, so they are easy to drop. We also want to drop the noise points that were classified as 7. And we were planning to drop that additional diagonal flightline we noticed during quality checking. We generated two lasinfo reports with the ‘-histo point_source 1’ option for the two tiles it was covering. From the two histograms it was easy to see that the diagonal flightline has the number 31.

First we run lascanopy on the 11 plots that you can download here. When running on plots it makes sense to first create a spatial indexing with lasindex for faster querying so that only those tiny parts of the LAZ file need to be loaded that actually cover the plots.

lasindex -i tiles_normalized\*.laz ^
         -cores 3

lascanopy -i tiles_normalized\*.laz -merged ^
          -drop_withheld ^
          -drop_class 7 ^
          -drop_point_source 31 ^
          -lop WKS_PLOTS.shp ^
          -cover_cutoff 3.0 ^
          -cov -dns ^
          -height_cutoff 2.0 ^
          -c 2.0 999.0 ^
          -max -avg -std -kur ^
          -p 25 50 75 95 ^
          -b 30 50 80 ^
          -d 2.0 5.0 10.0 50.0 ^
          -o plots.csv

The resulting ‘plots.csv’ file you can easily process in other software packages. It contains one line for each polygonal plot listed in the shapefile that lists its bounding box followed by all the requested metrics. But is why is there a zero maximum height (marked in orange) for plots 6 though 10? All height metrics are computed solely from returns that are higher than the ‘height_cutoff’ that was set to 2 meters. We added the ‘-c 2.0 999.0’ absolute count metric to keep track of the number of returns used in these calculations. Apparently in plots 6 though 10 there was not a single return above 2 meters as the count (also marked in orange) is zero for all these plots. Turns out this Eucalyptus stand had recently been harvested and the new seedlings are still shorter than 2 meters.

more plots.csv

Then we run lascanopy on the entire area and produce one raster per tile for each metric. Here we remove the buffered points with the ‘-use_tile_bb’ switch that also ensures that the produced rasters have exactly the extend of the tiles without buffers. Again, it is imperative that you download the version 170327 (or higher) of LAStools for this to work correctly.

lascanopy -version
LAStools (by version 170327 (academic)

lascanopy -i tiles_normalized\*.laz ^
          -use_tile_bb ^
          -drop_class 7 ^
          -drop_point_source 31 ^
          -step 10 ^
          -cover_cutoff 3.0 ^
          -cov -dns ^
          -height_cutoff 2.0 ^
          -c 2.0 999.0 ^
          -max -avg -std -kur ^
          -p 25 50 75 95 ^
          -b 30 50 80 ^
          -d 2.0 5.0 10.0 50.0 ^
          -odir tile_metrics -oasc ^
          -cores 3

The resulting rasters in ASC format can easily be previewed using lasview for some “sanity checking” that our metrics make sense and to get a quick overview about what these metrics look like.

lasview -i tile_metrics\suzana_*max.asc
lasview -i tile_metrics\suzana_*p95.asc
lasview -i tile_metrics\suzana_*p50.asc
lasview -i tile_metrics\suzana_*p25.asc
lasview -i tile_metrics\suzana_*cov.asc
lasview -i tile_metrics\suzana_*d00.asc
lasview -i tile_metrics\suzana_*d01.asc
lasview -i tile_metrics\suzana_*b30.asc
lasview -i tile_metrics\suzana_*b80.asc

The maximum height rasters are useful to inspect more closely as they will immediately tell us if there was any high noise point that slipped through the cracks. And indeed it happened as we see a maximum of 388.55 meters for of the 10 by 10 meter cells. As we know the expected height of the trees we could have added a ‘-drop_z_above 70’ to the lascanopy command line. Careful, however, when computing forestry metrics in strongly sloped terrains as the terrain slope can significantly lift up returns to heights much higher than that of the tree. This is guaranteed to happen for LiDAR returns from branches that are extending horizontally far over the down-sloped part of the terrain as shown in this paper here.

We did not use the shapefile for the stands in this exercise. We could have clipped the normalized LiDAR points to these stands using lasclip as shown in the GUI below before generating the raster metrics. This would have saved space and computation time as many of the LiDAR points lie outside of the stands. However, it might be better to do that clipping step on the rasters in whichever GIS software or statistics package you are using for the imputation computation to properly account for partly covered raster cells along the stand boundary. This could be subject of another blog article … (-:

not all LiDAR was needed to compute metrics for