LASmoons: Maeva Dang

Maeva Dang (recipient of three LASmoons)
Industrial Building and interdisciplinary Planning, Faculty of Civil Engineering
Vienna University of Technology, AUSTRIA

After centuries of urbanization and industrialization the green landscape of Rio de Janeiro in Brazil must be regenerated. The forests and other green areas, providers of ecosystem services, are fragmented and surrounded by dense urban occupation [1]. The loss of vegetation in the city reduces the amount of cooling and increases the urban heat islands effect. The metropolis also has a chronic problem with floods as a result of the lack of sustainable planning in urban areas of low permeability. A well-designed green infrastructure system is highly needed, since it would help the city to mitigate the negative effects of its urbanization and to be more resilient to environmental changes [2]. Intensive green roofs provide a large range of benefits from enhancing biodiversity in the city to reducing flood risks and mitigating the urban heat islands effect. The present research aims to quantitatively and accurately assess the intensive greening potential of the roof landscape of Rio de Janeiro based on LIDAR data.

A view of the roof landscape of the Urca district. Rio de Janeiro has high contrasts of forests and dense urban environments.

The LAStools software will be used to check the quality of the data and create a Digital Terrain Model (DTM) and Digital Surface Model (DSM) for the city of Rio de Janeiro. The goal of the study is to identify the existing flat roof surfaces suitable for intensive greening (i.e. that have a slope between 0 and 5 degrees). The results will be provided for free to the public.

 Airborne LiDAR data provided by the City hall of Rio de Janeiro, Instituto Municipal de Urbanismo Pereira Passos (IPP)
+ Average pulse density 2 pulses per square meter
+ Sensor System: Leica ALS60

LAStools processing:
1) check the quality of the LiDAR data [lasinfo, lasoverlap, lasgrid]
2) classify into ground and non-ground points using tile-based processing [lastilelasground]
3) remove low and high outliers [lasheight, lasnoise]
4) identify buildings within the study area [lasclassify]
5) normalize LiDAR heights [lasheight]
6) generate DTM and DSM [las2dem, lasgrid]

[1] Herzog C. (2012). Connecting the wonderful Landscapes of Rio de Janeiro. Available online . Accessed on 07/06/18.
[2] European Commission (2011). Communication from the Commission to the European Parliament, the Council, the
Economic and Social Committee and the Committee of the Regions: Our life insurance, our natural capital: an EU
biodiversity strategy to 2020. Available online. Accessed on 07/06/18.

LASmoons: Alex S. Olpenda

Alex S. Olpenda (recipient of three LASmoons)
Department of Geomatics and Spatial Planning, Faculty of Forestry
Warsaw University of Life Sciences, POLAND

The Bialowieza Forest is a trans-boundary property along the borders of Poland and Belarus consisting of diverse Central European lowland forest covering a total area of 141,885 hectares. Enlisted as one of the world’s biosphere reserves and a UNESCO World Heritage Site, the Bialowieza Forest conserves a complex ecosystem that supports vast wildlife including at least 250 species of birds and more than 50 mammals such as wolf, moose, lynx and the largest free-roaming population of the forest’s iconic species, the European bison [1]. The area is also significantly rich in dead wood which becomes a home for countless species of mushrooms, mold, bacteria and insects of which many of them are endangered of extinction [2]. Another factor, aside from soil type, that impacts the species of plant communities growing in the area is humidity [3] which can be considered as a function of solar radiation. Understanding the interactions and dynamics of these elements within the environment is vital for proper management and conservation practices. Sunlight below canopies is a driving force that affects the growth and survival of both fauna and flora directly and indirectly. Measurement and monitoring of this variable is crucial.

The European bison  (image credit to Frederic Demeuse).

Remote sensing technology can describe the light condition inside the forest with relatively high spatial and temporal resolutions at large scale. The goal of this research is to develop a predictive model to estimate sub-canopy light condition of Bialowieza Forest inside Poland’s territory using LiDAR data. Aside from common metrics based on heights and intensities, extraction of selected metrics known to infer transmitted light are also to be done. Returns that belong or are close to the ground are a good substitute for sun-rays that reach the forest floor while vegetation-classified returns could be assumed as the ones impeding the light. Relationships between these metrics and to both direct and diffuse sunlight derived from hemispherical photographs will be explored. Furthermore, multiple regression shall then be conducted between the parameters. Previous similar studies have been done successfully but mostly in homogeneous forest. The task might pose a challenge as Bialowieza Forest is a mixture of conifers and broad-leaved trees.

Location map of the study site with 100 random sample plots.

2015 ALS data set obtained using full waveform sensor (Riegl LMS-Q680i)
+ discrete point clouds (average pulse density: 6 points/m²)
+ 134 flightlines with 40% overlap
+ forest inventory data (100 circular plots, 12.62 m radius)
+ colored hemispherical photographs
All of this data is provided by the Forest Research Institute through the ForBioSensing project.

LAStools processing:
1) data quality checking [lasinfo, lasoverlap, lasgrid, lasreturn]
2) merge and clip the LAZ files [las2las]
3) classify ground and non-ground points [lasground]
4) remove low and high outliers [lasheight, lasnoise]
5) create a normalized point cloud [lasheight]
6) compute forestry metrics for each plot [lascanopy]

[1] UNESCO. World Heritage List. Available online (accessed on 2 October 2017).
[2] Polish Tourism Organization. Official Travel Website. Available online (accessed on 3 October 2017).
[3] Bialowieza National Park. Available online (accessed on 3 October 2017).

LASmoons: Martin Buchauer

Martin Buchauer (recipient of three LASmoons)
Cartography & Geomedia Technology
University of Applied Science Munich, GERMANY

Salt marsh areas provide numerous services such as natural flood defenses, carbon sequestration, agricultural services, and are a valuable coastal habitat for flora, fauna and humans. However, they are not only threatened by the constant rise of sea levels caused by global warming but also by human settlement in coastal areas. A sensible local coastal development is important as it may help to support the development and progression of stressed salt marshes.

Looking South you can see the salt marsh area next to a famous golf course with St Andrews in the background.


This research aims to visualize and extract vegetation metrics as well as the temporal analysis of four salt marsh data sets which are derived from terrestrial laser scanning. Located at the South and North shore of the Eden Estuary near St Andrews, Scotland, the scans were acquired in the summer and winter of 2016. Ground based laser scanning is an ideal method of fully reconstructing vegetation structures as well as having the ability to retrieve meaningful metrics such as height, area, and vegetation density. Although this technology has frequently been applied in the area of forestry, its application to salt marsh areas has not yet fully explored.

 TLS data acquired with a Leica HDS6100 (average density of 38000 points/m²)
+ ground control points (field data)

LAStools processing:
1) check the quality of the LiDAR data [lasinfo, lasoverlap, lasgrid]
2) merge and retile the original data with buffers [lastile]
3) classify point clouds into ground and non-ground [lasthin, lasground]
4) create digital terrain (DTM) and digital surface models (DSM) [lasthin, las2dem, blast2dem]

LASmoons: Sebastian Kasanmascheff

Sebastian Kasanmascheff (recipient of three LASmoons)
Forest Inventory and Remote Sensing
Georg-August-Universität Göttingen, GERMANY

Forest inventories are the backbone of forest management in Germany. In most federal forestry administrations in Germany, they are performed every ten years in order to assure that logging activities are sustainable. The process involves trained foresters who visit each stand (i.e. an area where the forest is similar in terms of age structure and tree species) and perform angle count sampling as developed by Walter Bitterlich in 1984. In a second step the annual growth is calculated using yield tables and finally a harvest volume is derived. There are three particular reasons to investigate how remote sensing can be integrated in the current inventory system:

  1. The current process does not involve random sampling of the sampling points and thus does not offer any measure of the accuracy of the data.
  2. Forest engineers hardly ever rely on the inventory data as a stand-alone basis for logging planning. Most often they rely on intuition alone and on the total volume count that they have to deliver for a wider area every year.
  3. In the last ten years, the collection of high-resolution LiDAR data has become more cost-effective and most federal agencies in Germany have access to it.

In order to be able to integrate the available remote-sensing data for forest inventories in Germany, it is important to tell apart different tree species as well as estimate their volumes.

Hesse is one of the most forested federal states in Germany.

The goal of this project is to perform an object-based classification of conifer trees in Northern Hesse based on high-resolution LiDAR and multi-spectral orthophotos. The first step is to delineate the tree crowns. The second step is to perform a semi-automated classification using the spectral signature of the different conifer species.

 DSM (1m), DTM (1m), DSM (0.2 m) of the study area
+ Stereo images with 0.2 m resolution
+ high-resolution LiDAR data (average 10 points/m²)
+ forest inventory data
+ vector files of the individual forest stands
+ ground control points (field data)
All of this data is provided by the Hessian Forest Agency (HessenForst).

LAStools processing:
1) merge and clip the LAZ files [las2las]
2) classify ground and non-ground points [lasground]
3) remove low and high outliers [lasheight, lasnoise]
4) identify buildings within the study area [lasclassify]
5) create a normalized point cloud [lasheight]
6) create a highest-return canopy height model (CHM) [lasthin, las2dem]
7) create a pit-free (CHM) with the spike-free algorithm [las2dem]

LASmoons: Manuel Jurado

Manuel Jurado (recipient of three LASmoons)
Departamento de Ingeniería Topográfica y Cartografía
Universidad Politécnica de Madrid, SPAIN

The availability of LiDAR data is creating a lot of innovative possibilities in different fields of science, education, and other field of interests. One of the areas that has been deeply impacted by LiDAR is cartography and in particular one highly specialized sub-field of cartography in the domain of recreational and professional orienteering running: the production of high-quality maps for orienteering races (Ditz et al., 2014). These are thematic maps with a lot of fine detail which demands many hours of field work for the map maker. In order to reduce the fieldwork, LiDAR data obtained from Airborne Research Australia (ARA) is going to be used in order to obtain DEM and to extract features that must be included in these maps. The data will be filtered and processed with the help of LAStools.

Final map with symbolism typical for use in orienteering running

The goal of this project is to extract either point (boulders, mounds), linear (contours, erosion gullies, cliffs) and area features (vegetation density) that should be drawn in a orienteering map derived from high-resolution LiDAR. Different LiDAR derived raster images are being created: 0.5m DTM, vegetation density (J. Ryyppo, 2013), slope, Sky-View factor (Ž. Kokalj et al., 2011), and shaded relief. The area used is in Renmark, South Australia and the produced map is going to be used for the Australian Orienteering Championships 2018.

Sky-View factor of DTM for same area as shown above.

4 square kilometers of airborne LiDAR data produced by Airborne Research Australia at 18 pulses per square meter using the full waveform scanning LiDAR Q680i-S laser scanner from RIEGL
+ 60 hours of check and validation work in the field

LAStools processing:
1) tile into 500 by 500 meter tiles with 20 meter buffer [lastile]
2) classify isolated points as noise [lasnoise]
3) classify point clouds into ground and non-ground [lasground]
4) create a Digital Terrain Model (DTM) [las2dem]
5) normalize height of points above the ground [lasheight]
6) compute vegetation density metrics [lascanopy]
7) create hillshades of the raster DTMs [blast2dem or GDAL]

Ditz, Robert, Franz Glaner, and Georg Gartner. (2014). “Laser Scanning and Orienteering Maps.” Scientific Journal of Orienteering 19.1.
JRyyppo, Jarkko. (2013). “Karttapullautin vegetation mapping guide”.
Kokalj, Žiga, Zaksek, Klemen, and Oštir, Krištof. (2011). Application of sky-view factor for the visualization of historic landscape features in lidar-derived relief models. Antiquity. 85. 263-273.

LASmoons: Chris J. Chandler

Chris J. Chandler (recipient of three LASmoons)
School of Geography
University of Nottingham, UNITED KINGDOM

Wetlands provide a range of important ecosystem services: they store carbon, regulate greenhouse gas emissions, provide flood protection as well as water storage and purification. Preserving these services is critical to achieve sustainable environmental management. Currently, mangrove forests are protected in Mexico, however, fresh water wetland forests, which also have high capacity for storing carbon both in the trees and in the soil, are not protected under present legislation. As a result, coastal wetlands in Mexico are threatened by conversion to grazing areas, drainage for urban development and pollution. Given these threats, there is an urgent need to understand the current state and distribution of wetlands to inform policy and protect the ecosystem services provided by these wetlands.
In this project we will combine field data collection, satellite data (i.e. optical remote sensing, radar and LiDAR remote sensing) and modelling to provide an integrated technology for assessing the value of a range of ecosystem services, tested to proof of concept stage based on carbon storage. The outcome of the project will be a tool for mapping the value of a range of ecosystem services. These maps will be made directly available to local stakeholders including policy makers and land users to inform policy regarding forest protection/legislation and aid development of financial incentives for local communities to protect these services.

Wetland classification in the Chiapas region of Mexico

At this stage of the project we have characterized wetlands for three priority areas in Mexico (Pantanos de Centla, La Encrucijada and La Mancha). Next stage is the up scaling of the field data at the three study sites using LiDAR data for producing high quality Canopy Height Model (CHM), which has been of great importance for biomass estimation (Ferraz et al., 2016). A high quality CHM will be achieved using LAStools software.

LiDAR provided by the Mexican National Institute of Statistics and Geography (INEGI)
+ average height: 5500 m, mirror angle: +/- 30 degrees, speed: 190 knots
+ collected with Cessna 441, Conquest II system at 1 pts/m².

LAStools processing:
create 1000 meter tiles with 35 meter buffer to avoid edge artifacts [lastile]
2) classify point clouds into ground and non-ground [lasground]
3) normalize height of points above the ground [lasheight]
4) create a Digital Terrain and Surface Model (DTM and DSM) [las2dem]
5) generate a spike-free Canopy Height Model (CHM) as described here and here [las2dem]
6) compute various metrics for each plot and the normalized tiles [lascanopy]

Ferraz, A., Saatchi, S., Mallet, C., Jacquemoud S., Gonçalves G., Silva C.A., Soares P., Tomé, M. and Pereira, L. (2016). Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory. Remote Sensing, 8(8), 653.

Processing Drone LiDAR from YellowScan’s Surveyor, a Velodyne Puck based System

Points clouds from UAVs have become a common sight. Cheap consumer drones equipped with cameras produce points from images with increasing quality as photogrammetry software is improving. But vegetation is always a show stopper for point clouds generated from imagery data. Only an active sensing technique such as laser scanning can penetrate through the vegetation and generate points on the ground under the canopy of a forested area. Advances in UAV technology and the miniaturization of LiDAR systems have allowed lasers-scanning solutions for drones to enter the market.

Last summer we attended the LiDAR for Drone 2017 Conference by YellowScan and processed some data sets flown with their Surveyor system that is built around the Velodyne VLP-16 Puck LiDAR scanner and the Applanix APX15 single board GNSS-Inertial solution. One common challenge observed in LiDAR data generated by the Velodyne Puck is that surfaces are not as “crisp” as those generated by other laser scanners. Flat and open terrain surfaces are described by a layer of points with a “thickness” of a few centimeter as you can see in the images below. This visualization uses a 10 meter by 5 meter cut-out of from this data set with the coordinate range [774280,774290) in x and [6279463,6279468) in y. Standard ground classification routines will “latch onto” the lowermost envelope of these thick point layers and therefore produce a sub-optimal Digital Terrain Model (DTM).

In part this “thickness” can be reduced by using fewer flightlines as the “thickness” of each flightline by itself is lower but it is compounded when merging all flightlines together. However, deciding which (subset of) flightlines to use for which part of the scene to generate the best possible ground model is not an obvious tasks either and even per flightline there will be a remaining “thickness” to deal with as can be seen in the following set of images.

In the following we show how to deal with “thickness” in a layer of points describing a ground surface. We first produce a “lowest ground” which we then widen into a “thick ground” from which we then derive “median ground” points that create a plausible terrain representation when interpolated by a Delaunay triangulation and rasterized onto a DTM. Step by step we process this example data set captured in a “live demo” during the LiDAR for Drone 2017 Conference – the beautiful Château de Flaugergues in Montpellier, France where the event took place. You can download this data via this link if you would like to repeat these processing steps:

Once you decompress the RAR file (e.g. with the UnRar.exe freeware) you will find six raw flight strips in LAS format and the trajectory of the UAV in ASCII text format as it was provided by YellowScan.

E:\LAStools\bin>dir Flaugergues
06/27/2017 08:03 PM 146,503,985 Flaugergues_test_demo_ppk_L1.las
06/27/2017 08:02 PM  91,503,103 Flaugergues_test_demo_ppk_L2.las
06/27/2017 08:03 PM 131,917,917 Flaugergues_test_demo_ppk_L3.las
06/27/2017 08:03 PM 219,736,585 Flaugergues_test_demo_ppk_L4.las
06/27/2017 08:02 PM 107,705,667 Flaugergues_test_demo_ppk_L5.las
06/27/2017 08:02 PM  74,373,053 Flaugergues_test_demo_ppk_L6.las
06/27/2017 08:03 PM   7,263,670 Flaugergues_test_demo_ppk_traj.txt

As usually we start with quality checking by visual inspection with lasview and by creating a textual report with lasinfo.

E:\LAStools\bin>lasview Flaugergues_test_demo_ppk_L1.las

The raw LAS file “Flaugergues_test_demo_ppk_L1.las” colored by elevation.

E:\LAStools\bin>lasinfo Flaugergues_test_demo_ppk_L1.las
lasinfo (171011) report for Flaugergues_test_demo_ppk_L1.las
reporting all LAS header entries:
 file signature: 'LASF'
 file source ID: 1
 global_encoding: 1
 project ID GUID data 1-4: 00000000-0000-0000-0000-000000000000
 version major.minor: 1.2
 system identifier: 'YellowScan Surveyor'
 generating software: 'YellowReader by YellowScan'
 file creation day/year: 178/2017
 header size: 227
 offset to point data: 297
 number var. length records: 1
 point data format: 3
 point data record length: 34
 number of point records: 4308932
 number of points by return: 4142444 166488 0 0 0
 scale factor x y z: 0.001 0.001 0.001
 offset x y z: 774282 6279505 92
 min x y z: 774152.637 6279377.623 82.673
 max x y z: 774408.344 6279541.646 116.656
variable length header record 1 of 1:
 reserved 0
 user ID 'LASF_Projection'
 record ID 34735
 length after header 16
 description ''
 GeoKeyDirectoryTag version 1.1.0 number of keys 1
 key 3072 tiff_tag_location 0 count 1 value_offset 2154 - ProjectedCSTypeGeoKey: RGF93 / Lambert-93
reporting minimum and maximum for all LAS point record entries ...
 X -129363 126344
 Y -127377 36646
 Z -9327 24656
 intensity 0 65278
 return_number 1 2
 number_of_returns 1 2
 edge_of_flight_line 0 0
 scan_direction_flag 0 0
 classification 0 0
 scan_angle_rank -120 120
 user_data 75 105
 point_source_ID 1 1
 gps_time 219873.160527 219908.550379
 Color R 0 0
 G 0 0
 B 0 0
number of first returns: 4142444
number of intermediate returns: 0
number of last returns: 4142444
number of single returns: 3975956
overview over number of returns of given pulse: 3975956 332976 0 0 0 0 0
histogram of classification of points:
 4308932 never classified (0)

Nicely visible are the circular scanning patterns of the Velodyne VLP-16 Puck. We also notice that the trajectory of the UAV can be seen in the lasview visualization because the Puck was scanning the drone’s own landing gear. The lasinfo report tells us that point coordinates are stored with too much resolution (mm) and that points do not need to be stored using point type 3 (with RGB colors) because all RGB values are zero. We fix this with an initial run of las2las and also compress the raw strips to the LAZ format on 4 CPUs in parallel.

las2las -i Flaugergues\*.las ^
        -rescale 0.01 0.01 0.01 ^
        -auto_reoffset ^
        -set_point_type 1 ^
        -odir Flaugergues\strips_raw -olaz ^
        -cores 4

Next we do the usual check for flightline alignment with lasoverlap (README) which we consider to be by far the most important quality check. We compare the lowest elevation from different flightline per 25 cm by 25cm cell in all overlap areas. We consider a vertical difference of up to 5 cm as acceptable (color coded as white) and mark differences of over 30 cm (color coded as saturated red or blue).

lasoverlap -i Flaugergues\strips_raw\*.laz -faf ^
           -step 0.25 ^
           -min_diff 0.05 -max_diff 0.3 ^
           -odir Flaugergues\quality -o overlap.png

The vertical difference in open areas between the flightlines is slightly above 5 cm which we consider acceptable in this example. Depending on the application we recommend to investigate further where these differences come from and what consequences they may have for post processing. We also create a color-coded visualization of the last return density per 25 cm by 25 cm cell using lasgrid (README) with blue meaning less than 100 returns per square meter and red meaning more than 4000 returns per square meter.

lasgrid -i Flaugergues\strips_raw\*.laz -merged ^
        -keep_last ^
        -step 0.25 ^
        -point_density ^
        -false -set_min_max 100 4000 ^
        -odir Flaugergues\quality -o density_100_4000.png

Color coded density of last returns per square meter for each 25 cm by 25 cm cell. Blue means 100 or less last returns per square meter. Red means 4000 or more last returns per square meter

As usual we start the LiDAR processing by reorganizing the flightlines into square tiles. Because of the variability in the density that is evident in the visualization above we use lastile (README) to create an adaptive tiling that starts with 200 m by 200 m tiles and then iterate to refine those tiles with over 10 million points down to smaller 25 m by 25 m tiles.

lastile -i Flaugergues\strips_raw\*.laz ^
        -apply_file_source_ID ^
        -tile_size 200 -buffer 8 -flag_as_withheld ^
        -refine_tiling 10000000 ^
        -odir Flaugergues\tiles_raw -o flauge.laz

lastile -i Flaugergues\tiles_raw\flauge*_200.laz ^
        -refine_tiles 10000000 ^
        -olaz ^
        -cores 4

lastile -i Flaugergues\tiles_raw\flauge*_100.laz ^
        -refine_tiles 10000000 ^
        -olaz ^
        -cores 4

lastile -i Flaugergues\tiles_raw\flauge*_50.laz ^
        -refine_tiles 10000000 ^
        -olaz ^
        -cores 4

Subsequent processing is faster when the points have a spatially coherent order. Therefore we rearrange the points into standard space-filling z-order using a call to lassort (README). We run this in parallel on as many cores as it makes sense (i.e. not using more cores than there are physical CPUs).

lassort -i Flaugergues\tiles_raw\flauge*.laz ^
        -odir Flaugergues\tiles_sorted -olaz ^
        -cores 4

Next we classify those points as noise that are isolated on a 3D grid of 1 meter cell size using lasnoise. See the README file of lasnoise for a description on the exact manner in which the isolated points are classified. We do this to eliminate low noise points that would otherwise cause trouble in the subsequent processing.

lasnoise -i Flaugergues\tiles_sorted\flauge*.laz ^
         -step 1 -isolated 5 ^
         -odir Flaugergues\tiles_denoised -olaz ^
         -cores 4

Next we mark the subset of lowest points on a 2D grid of 10 cm cell size with classification code 8 using lasthin (README) while ignoring the noise points with classification code 7 that were marked as noise in the previous step.

lasthin -i Flaugergues\tiles_denoised\flauge*.laz ^
        -ignore_class 7 ^
        -step 0.1 -lowest ^
        -classify_as 8 ^
        -odir Flaugergues\tiles_lowest -olaz ^
        -cores 4

Considering only the resulting points marked with classification 8 we then create a temporary ground classification that we refer to as the “lowest ground”. For this we run lasground (README) with a set of suitable parameters that were found by experimentation on two of the most complex tiles from the center of the survey.

lasground -i Flaugergues\tiles_lowest\flauge*.laz ^
          -ignore_class 0 7 ^
          -step 5 -hyper_fine -bulge 1.5 -spike 0.5 ^
          -odir Flaugergues\tiles_lowest_ground -olaz ^
          -cores 4

We then “thicken” this “lowest ground” by classifying all points that are between 2 cm below and 15 cm above the lowest ground to a temporary classification code 6 using the lasheight (README) tool. Depending on the spread of points in your data set you may want to tighten this range accordingly, for example when processing the flightlines acquired by the Velodyne Puck individually. We picked our range based on the visual experiments with “drop lines” and “rise lines” in the lasview viewer that are shown in images above.

lasheight -i Flaugergues\tiles_lowest_ground\flauge*.laz ^
          -do_not_store_in_user_data ^
          -classify_between -0.02 0.15 6 ^
          -odir Flaugergues\tiles_thick_ground -olaz ^
          -cores 4

The final ground classification is obtained by creating the “median ground” from the “thick ground”. This uses a brand-new option in the lasthin (README) tool of LAStools. The new ‘-percentile 50 10’ option selects the point that is closest to the specified percentile of 50 of all point elevations within a grid cell of a specified size given there are at least 10 points in that cell. The selected point either survives the thinning operation or gets marked with a specified classification code or flag.

lasthin -i Flaugergues\tiles_thick_ground\flauge*.laz ^
        -ignore_class 0 1 7 ^
        -step 0.1 -percentile 50 10 ^
        -classify_as 8 ^
        -odir Flaugergues\tiles_median_ground_10_10cm -olaz ^
        -cores 4

lasthin -i Flaugergues\tiles_median_ground_10_10cm\%NAME%*.laz ^
        -ignore_class 0 1 7 ^
        -step 0.2 -percentile 50 10 ^
        -classify_as 8 ^
        -odir Flaugergues\tiles_median_ground_10_20cm -olaz ^
        -cores 4

lasthin -i Flaugergues\tiles_median_ground_10_20cm\%NAME%*.laz ^
        -ignore_class 0 1 7 ^
        -step 0.4 -percentile 50 10 ^
        -classify_as 8 ^
        -odir Flaugergues\tiles_median_ground_10_40cm -olaz ^
        -cores 4

lasthin -i Flaugergues\tiles_median_ground_10_40cm\flauge*.laz ^
        -ignore_class 0 1 7 ^
        -step 0.8 -percentile 50 10 ^
        -classify_as 8 ^
        -odir Flaugergues\tiles_median_ground_10_80cm -olaz ^
         -cores 4

We now compare a triangulation of the median ground points with a triangulation of the highest and the lowest points per 10 cm by 10 cm cell to demonstrate that – at least in open areas – we really have computed a median ground surface.

Finally we raster the tiles with the las2dem (README) tool onto binary elevation grids in BIL format. Here we make the resolution dependent on the tile size, giving the 25 meter and 50 meter tiles the highest resolution of 10 cm and rasterize the 100 meter and 200 meter tiles at 20 cm and 40 cm respectively.

las2dem -i Flaugergues\tiles_median_ground_10_80cm\*_25.laz ^
        -i Flaugergues\tiles_median_ground_10_80cm\*_50.laz ^
        -keep_class 8 ^
        -step 0.1 -use_tile_bb ^
        -odir Flaugergues\tiles_dtm -obil ^
        -cores 4

las2dem -i Flaugergues\tiles_median_ground_10_80cm\*_100.laz ^
        -keep_class 8 ^
        -step 0.2 -use_tile_bb ^
        -odir Flaugergues\tiles_dtm -obil ^
        -cores 4

las2dem -i Flaugergues\tiles_median_ground_10_80cm\*_200.laz ^
        -keep_class 8 ^
        -step 0.4 -use_tile_bb ^
        -odir Flaugergues\tiles_dtm -obil ^
        -cores 4

Because all LAStools can read BIL files via on the fly conversion from rasters to points we can visually inspect the resulting elevation rasters with the lasview (README) tool. By adding the ‘-faf’ or ‘files_are_flightlines’ argument we treat the BIL files as if they were different flightlines which allows us to assign different color to points from different files to better inspect the transitions between tiles. The ‘-points 10000000’ argument instructs lasview to load up to 10 million points into memory instead of the default 5 million.

lasview -i Flaugergues\tiles_dtm\*.bil -faf ^
        -points 10000000

Final raster tiles in BIL format of three different sizes form seamless DTM.

For visual comparison we also produce a DSM and create hillshades. Note that the workflow for DSM creation shown below produces a “highest DSM” that will always be a few centimeter above the “median DTM”. This will be noticeable only in open areas of the terrain where the DSM and the DTM should coincide and their elevation should be identical.

lasthin -i Flaugergues\tiles_denoised\flauge*.laz ^
        -keep_z_above 110 ^
        -filtered_transform ^
        -set_classification 18 ^
        -ignore_class 7 18 ^
        -step 0.1 -highest ^
        -classify_as 5 ^
        -odir Flaugergues\tiles_highest -olaz ^
        -cores 4

las2dem -i Flaugergues\tiles_highest\*_25.laz ^
        -i Flaugergues\tiles_highest\*_50.laz ^
        -keep_class 5 ^
        -step 0.1 -use_tile_bb ^
        -odir Flaugergues\tiles_dsm -obil ^
        -cores 4

las2dem -i Flaugergues\tiles_highest\*_100.laz ^
        -keep_class 5 ^
        -step 0.2 -use_tile_bb ^
        -odir Flaugergues\tiles_dsm -obil ^
        -cores 4

las2dem -i Flaugergues\tiles_highest\*_200.laz ^
        -keep_class 5 ^
        -step 0.4 -use_tile_bb ^
        -odir Flaugergues\tiles_dsm -obil ^
        -cores 4

We thank YellowScan for challenging us to process their drone LiDAR with LAStools in order to present results at their LiDAR for Drone 2017 Conference and for sharing several example data sets with us, including the one used here.